Download Free Delay Doppler Communications Book in PDF and EPUB Free Download. You can read online Delay Doppler Communications and write the review.

Orthogonal Frequency Division Multiplexing (OFDM) has been the waveform of choice for most wireless communications systems in the past 25 years. This book addresses the “what comes next? question by presenting the recently proposed waveform known as Orthogonal Time-Frequency-Space (OTFS), which offers a better alternative for high-mobility environments. The OTFS waveform is based on the idea that the mobile wireless channels can be effectively modelled in the delay-Doppler domain. This domain provides a sparse representation closely resembling the physical geometry of the wireless channel. The key physical parameters such as relative velocity and distance of the reflectors with respect to the receiver can be considered roughly invariant in the duration of a frame up to a few milliseconds. This enables the information symbols encoded in the delay-Doppler domain to experience a flat fading channel even when they are affected by multiple Doppler shifts present in high-mobility environments. Delay-Doppler Communications: Principles and Applications covers the fundamental concepts and the underlying principles of delay-Doppler communications. Readers familiar with OFDM will be able to quickly understand the key differences in delay-Doppler domain waveforms that can overcome some of the challenges of high-mobility communications. For the broader readership with a basic knowledge of wireless communications principles, the book provides sufficient background to be self-contained. The book provides a general overview of future research directions and discusses a range of applications of delay-Doppler domain signal processing. This is the first book on delay-Doppler communications It is written by three of the leading authorities in the field It includes a wide range of applications With this book, the reader will be able to: Recognize the challenges of high-mobility channels affected by both multipath and multiple Doppler shifts in physical layer waveform design and performance Understand the limitations of current multicarrier techniques such as OFDM in high-mobility channels Recognize the mathematical and physical relations between the different domains for representing channels and waveforms: time-frequency, time-delay, delay-Doppler Understand the operation of the key blocks of a delay-Doppler modulator and demodulator both analytically and by hands-on MATLAB examples Master the special features and advantages of OTFS with regard to detection, channel estimation, MIMO, and multiuser MIMO Realize the importance of delay-Doppler communications for current and future applications, e.g., 6G and beyond
Over the last few decades wireless communications, especially Mobile Communication Technology, has evolved by leaps and bounds. The mobile communication industry has named the different major changes as generations namely 1G, 2G,..5G. We are presently looking at deployment of 5G technologies. The work for 6G has already started. This book is focused on the waveform design of 6G. It presents a discourse on a potential waveform for 6G namely Orthogonal Time Frequency Space (OTFS) modulation. OTFS has a distinct feature when compared to earlier generation waveforms such that information bearing signal is placed in the delay Doppler domain as opposed to the usual placement of such signals in the time-frequency domain. This unique feature of OTFS enables it to overcome several disadvantages of a very popular and highly successful waveform namely Orthogonal Frequency Division Multiplexing (OFDM). OTFS is known to be more resilient to frequency offset and Doppler which is one of the key drawbacks of OFDM. With this feature, OTFS, can support higher mobility as well as higher frequency bands of operation which is also one of the key requirements of the next generation wireless communication technologies. The implementation complexity of OTFS remains comparable to that of OFDM. It is found that OTFS provides significant SNR advantage, higher resilience, lower PAPR, lower out of band signal leakage and higher multi-user spectral efficiency than that of OFDM. This book addresses• Fundamental signal model of OTFS. • Receiver design for OTFS• Channel estimation in OTFS• Multiple Access through non-orthogonal multiple access (NOMA-OTFS) The contents of the books are primarily outcome of the research work done at the G. S. Sanyal School of Telecommunications, Indian Institute of Technology Kharagpur, Kharagpur, India. Orthogonal Time Frequency Space Modulation : A waveform for 6G is ideal for personnel the wireless communication industry as well as academic staff and master/research students in electrical engineering with a specialization in wireless communications.
As a result of higher frequencies and increased user mobility, researchers and systems designers are shifting their focus from time-invariant models to channels that vary within a block. Wireless Communications Over Rapidly Time-Varying Channels explains the latest theoretical advances and practical methods to give an understanding of rapidly time varying channels, together with performance trade-offs and potential performance gains, providing the expertise to develop future wireless systems technology. As well as an overview of the issues of developing wireless systems using time-varying channels, the book gives extensive coverage to methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, as well as providing models and transceiver methods for time-varying ultra-wideband channels. An introduction to time-varying channel models gives in a nutshell the important issues of developing wireless systems technology using time-varying channels Extensive coverage of methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, enables development of high performance wireless systems Chapters on transceiver design for OFDM and receiver algorithms for MIMO communication channels over time-varying channels, with an emphasis on modern iterative turbo-style architectures, demonstrates how these important technologies can optimize future wireless systems
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
The conventional ambiguity function is extended to include the Doppler distortions of the modulation function. The distinctive features of the extension are the use of the complex notation for wide-band signals, and inclusion of the Doppler effect on the signal amplitude. The result is an ambiguity function from which Woodward's form can be found by inspection. It is shown that the well-known volume constraint also applies, in unchanged form, to the generalized ambiguity function. For the volume to be constant, it is not required that the distortions of the modulation function be neglected. Rather, the volume constancy is related to the sinusoidal fluctuations of a modulated-carrier type signal and thus is strictly a matter of the percentage bandwidth of the signal. (Author).
Learn how radio access network (RAN) slicing allows 5G networks to adapt to a wide range of environments in this masterful resource Radio Access Network Slicing and Virtualization for 5G Vertical Industriesprovides readers with a comprehensive and authoritative examination of crucial topics in the field of radio access network (RAN) slicing. Learn from renowned experts as they detail how this technology supports and applies to various industrial sectors, including manufacturing, entertainment, public safety, public transport, healthcare, financial services, automotive, and energy utilities. Radio Access Network Slicing and Virtualization for 5G Vertical Industries explains how future wireless communication systems must be built to handle high degrees of heterogeneity, including different types of applications, device classes, physical environments, mobility levels, and carrier frequencies. The authors describe how RAN slicing can be utilized to adapt 5G technologies to such wide-ranging circumstances. The book covers a wide range of topics necessary to understand RAN slicing, including: Physical waveforms design Multiple service signals coexistence RAN slicing and virtualization Applications to 5G vertical industries in a variety of environments This book is perfect for telecom engineers and industry actors who wish to identify realistic and cost-effective concepts to support specific 5G verticals. It also belongs on the bookshelves of researchers, professors, doctoral, and postgraduate students who want to identify open issues and conduct further research.
This exclusive coverage of the opportunities, technological challenges, solutions, and state of the art of large MIMO systems provides an in-depth discussion of algorithms for large MIMO signal processing, suited for large MIMO signal detection, precoding and LDPC code designs. An ideal resource for researchers, designers, developers and practitioners in wireless communications.
This book begins with a historical overview of the evolution of mobile technologies and addresses two key questions: why do we need 6G? and what will 6G be? The remaining chapters of this book are organized into three parts: Part I covers the foundation of an end-to-end 6G system by presenting 6G vision, driving forces, key performance indicators, and societal requirements on digital inclusion, sustainability, and intelligence. Part II presents key radio technology components for the 6G communications to deliver extreme performance, including new radio access technologies at high frequencies, joint communications and sensing, AI-driven air interface, among others. Part III describes key enablers for intelligent 6G networking, including network disaggregation, edge computing, data-driven management and orchestration, network security and trustworthiness, among others. This book is relevant to researchers, professionals, and academics working in 5G/6G and beyond.
The aim of this thesis is to introduce a non-stationary model for the scattering in mobile-to-mobile channels. Due to the evolution of wireless technology, fixed-to-mobile communications systems are nowadays complemented by mobile-to-mobile communications systems. In the vehicular sector, mobile-to-mobile communications systems are used to enable intelligent transportation systems. Such systems aim to make transportation safer and more efficient by distributing sensor information among the cars. In the aeronautical sector, mobile-to-mobile communications systems will be used, for example, to exchange position, altitude, speed, and heading data between aircraft during flight thus allowing for a reduced separation between them. Hence, these systems are necessary to further increase the air traffic density.