Download Free Degenerate And Other Problems Book in PDF and EPUB Free Download. You can read online Degenerate And Other Problems and write the review.

This Monograph contains a collection of problems arising in partial differential equations investigated by means of complex analysis approached in elementary ways.
In the recent half-century, many mathematicians have investigated various problems on several equations of mixed type and obtained interesting results, with important applications to gas dynamics. However, the Tricomi problem of general mixed type equations of second order with parabolic degeneracy has not been completely solved, particularly the Tricomi and Frankl problems for general Chaplygin equation in multiply connected domains posed by L Bers, and the existence, regularity of solutions of the above problems for mixed equations with non-smooth degenerate curve in several domains posed by J M Rassias. The method revealed in this book is unlike any other, in which the hyperbolic number and hyperbolic complex function in hyperbolic domains, and the complex number and complex function in elliptic domains are used. The corresponding problems for first order complex equations with singular coefficients are first discussed, and then the problems for second order complex equations are considered, where we pose the new partial derivative notations and complex analytic methods such that the forms of the above first order complex equations in hyperbolic and elliptic domains are wholly identical. In the meantime, the estimates of solutions for the above problems are obtained, hence many open problems including the above TricomiOCo Bers and TricomiOCoFranklOCoRassias problems can be solved. Sample Chapter(s). Chapter 1: Elliptic Complex Equations of First Order (247 KB). Contents: Elliptic Complex Equations of First Order; Elliptic Complex Equations of Second Order; Hyperbolic Complex Equations of First and Second Orders; First Order Complex Equations of Mixed Type; Second Order Linear Equations of Mixed Type; Second Order Quasilinear Equations of Mixed Type. Readership: Graduate students and academics in analysis, differential equations and applied mathematics.
This volume is a comprehensive, state-of-the-art clinical reference on spondylolysis, spondylolisthesis, and degenerative spondylolisthesis. Leading experts from the United States, Europe, and Israel present the latest concepts and findings on the biomechanics, clinical presentation, imaging, diagnosis, natural evolution, and conservative and surgical treatment of these vertebral conditions in adults and in children. A major portion of the book focuses on current strategies for surgical treatment in adults.
The Classical Stefan Problem: Basic Concepts, Modelling and Analysis with Quasi-Analytical Solutions and Methods, New Edition, provides fundamental theory, concepts, modelling and analysis of the physical, mathematical, thermodynamical and metallurgical properties of classical Stefan and Stefan-like problems as applied to heat transfer problems involving phase-changes, such as from liquid to solid. This self-contained work reports and derives the results from tensor analysis, differential geometry, non-equilibrium thermodynamics, physics and functional analysis, and is thoroughly enriched with many appropriate references for an in-depth background reading on theorems. This new edition includes more than 400 pages of new material on quasi-analytical solutions and methods of classical Stefan and Stefan-like problems. The book aims to bridge the gap between the theoretical and solution aspects of the afore-mentioned problems. - Provides both the phenomenology and mathematics of Stefan problems - Bridges physics and mathematics in a concrete and readable manner - Presents well-organized chapters that start with proper definitions followed by explanations and references for further reading - Includes both numerical and quasi-analytical solutions and methods of classical Stefan and Stefan-like problems
The objective of this monograph is to present some methodological foundations of theoretical mechanics that are recommendable to graduate students prior to, or jointly with, the study of more advanced topics such as statistical mechanics, thermodynamics, and elementary particle physics. A program of this nature is inevitably centered on the methodological foundations for Newtonian systems, with particular reference to the central equations of our theories, that is, Lagrange's and Hamilton's equations. This program, realized through a study of the analytic representations in terms of Lagrange's and Hamilton's equations of generally nonconservative Newtonian systems (namely, systems with Newtonian forces not necessarily derivable from a potential function), falls within the context of the so-called Inverse Problem, and consists of three major aspects: l. The study of the necessary and sufficient conditions for the existence of a Lagrangian or Hamiltonian representation of given equations of motion with arbitrary forces; 2. The identification of the methods for the construction of a Lagrangian or Hamiltonian from given equations of motion verifying conditions 1; and 3 The analysis of the significance of the underlying methodology for other aspects of Newtonian Mechanics, e. g. , transformation theory, symmetries, and first integrals for nonconservative Newtonian systems. This first volume is devoted to the foundations of the Inverse Problem, with particular reference to aspects I and 2.