Download Free Deformation Theory Book in PDF and EPUB Free Download. You can read online Deformation Theory and write the review.

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.
This account of deformation theory in classical algebraic geometry over an algebraically closed field presents for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet relevant to algebraic geometers. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry.
This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.
Due to plate motions, tidal effects of the Moon and the Sun, atmosphe ric, hydrological, ocean loading and local geological processes, and due to the rotation of the Earth, all points on the Earth's crust are sub ject to deformation. Global plate motion models, based on the ocean floor spreading rates, transform fault azimuths, and earthquake slip vectors, describe average plate motions for a time period of the past few million years. Therefore, the investigation of present-day tectonic activities by global plate motion models in a small area with complex movements cannot supply satisfactory results. The contribution of space techniques [Very Long Baseline Interferome try (VLBI); Satellite Laser Ranging (SLR); Global Positioning System (GPS)] applied to the present-day deformations ofthe Earth's surface and plate tectonics has increased during the last 20 to 25 years. Today one is able to determine by these methods the relative motions in the em to sub-em-range between points far away from each other.
Image Correlation for Shape, Motion and Deformation Measurements provides a comprehensive overview of data extraction through image analysis. Readers will find and in-depth look into various single- and multi-camera models (2D-DIC and 3D-DIC), two- and three-dimensional computer vision, and volumetric digital image correlation (VDIC). Fundamentals of accurate image matching are described, along with presentations of both new methods for quantitative error estimates in correlation-based motion measurements, and the effect of out-of-plane motion on 2D measurements. Thorough appendices offer descriptions of continuum mechanics formulations, methods for local surface strain estimation and non-linear optimization, as well as terminology in statistics and probability. With equal treatment of computer vision fundamentals and techniques for practical applications, this volume is both a reference for academic and industry-based researchers and engineers, as well as a valuable companion text for appropriate vision-based educational offerings.
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.