Download Free Deformation Quantization For Actions Of Kahlerian Lie Groups Book in PDF and EPUB Free Download. You can read online Deformation Quantization For Actions Of Kahlerian Lie Groups and write the review.

Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
This work describes a general construction of a deformation quantization for any Poisson bracket on a manifold which comes from an action of R ]d on that manifold. These deformation quantizations are strict, in the sense that the deformed product of any two functions is again a function and that there are corresponding involutions and operator norms. Many of the techniques involved are adapted from the theory of pseudo-differential operators. The construction is shown to have many favorable properties. A number of specific examples are described, ranging from basic ones such as quantum disks, quantum tori, and quantum spheres, to aspects of quantum groups.
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book. .
This work describes a general construction of a deformation quantization for any Poisson bracket on a manifold which comes from an action of R ]d on that manifold. These deformation quantizations are strict, in the sense that the deformed product of any two functions is again a function and that there are corresponding involutions and operator norms. Many of the techniques involved are adapted from the theory of pseudo-differential operators. The construction is shown to have many favorable properties. A number of specific examples are described, ranging from basic ones such as quantum disks, quantum tori, and quantum spheres, to aspects of quantum groups.
This book is an outgrowth of the activities of the Center for Geometry and Mathematical Physics (CGMP) at Penn State from 1996 to 1998. The Center was created in the Mathematics Department at Penn State in the fall of 1996 for the purpose of promoting and supporting the activities of researchers and students in and around geometry and physics at the university. The CGMP brings many visitors to Penn State and has ties with other research groups; it organizes weekly seminars as well as annual workshops The book contains 17 contributed articles on current research topics in a variety of fields: symplectic geometry, quantization, quantum groups, algebraic geometry, algebraic groups and invariant theory, and character istic classes. Most of the 20 authors have talked at Penn State about their research. Their articles present new results or discuss interesting perspec tives on recent work. All the articles have been refereed in the regular fashion of excellent scientific journals. Symplectic geometry, quantization and quantum groups is one main theme of the book. Several authors study deformation quantization. As tashkevich generalizes Karabegov's deformation quantization of Kahler manifolds to symplectic manifolds admitting two transverse polarizations, and studies the moment map in the case of semisimple coadjoint orbits. Bieliavsky constructs an explicit star-product on holonomy reducible sym metric coadjoint orbits of a simple Lie group, and he shows how to con struct a star-representation which has interesting holomorphic properties.
This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.
This volume contains the proceedings of the conference "Colloque de Goometrie Symplectique et Physique Mathematique" which was held in Aix-en-Provence (France), June 11-15, 1990, in honor of Jean-Marie Souriau. The conference was one in the series of international meetings of the Seminaire Sud Rhodanien de Goometrie, an organization of geometers and mathematical physicists at the Universities of Avignon, Lyon, Mar seille, and Montpellier. The scientific interests of Souriau, one of the founders of geometric quantization, range from classical mechanics (symplectic geometry) and quantization problems to general relativity and astrophysics. The themes of this conference cover "only" the first two of these four areas. The subjects treated in this volume could be classified in the follow ing way: symplectic and Poisson geometry (Arms-Wilbour, Bloch-Ratiu, Brylinski-Kostant, Cushman-Sjamaar, Dufour, Lichnerowicz, Medina, Ouzilou), classical mechanics (Benenti, Holm-Marsden, Marle) , particles and fields in physics (Garcia Perez-Munoz Masque, Gotay, Montgomery, Ne'eman-Sternberg, Sniatycki) and quantization (Blattner, Huebschmann, Karasev, Rawnsley, Roger, Rosso, Weinstein). However, these subjects are so interrelated that a classification by headings such as "pure differential geometry, applications of Lie groups, constrained systems in physics, etc. ," would have produced a completely different clustering! The list of authors is not quite identical to the list of speakers at the conference. M. Karasev was invited but unable to attend; C. Itzykson and M. Vergne spoke on work which is represented here only by the title of Itzykson's talk (Surfaces triangulees et integration matricielle) and a summary of Vergne's talk.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​
These two volumes constitute the Proceedings of the `Conférence Moshé Flato, 1999'. Their spectrum is wide but the various areas covered are, in fact, strongly interwoven by a common denominator, the unique personality and creativity of the scientist in whose honor the Conference was held, and the far-reaching vision that underlies his scientific activity. With these two volumes, the reader will be able to take stock of the present state of the art in a number of subjects at the frontier of current research in mathematics, mathematical physics, and physics. Volume I is prefaced by reminiscences of and tributes to Flato's life and work. It also includes a section on the applications of sciences to insurance and finance, an area which was of interest to Flato before it became fashionable. The bulk of both volumes is on physical mathematics, where the reader will find these ingredients in various combinations, fundamental mathematical developments based on them, and challenging interpretations of physical phenomena. Audience: These volumes will be of interest to researchers and graduate students in a variety of domains, ranging from abstract mathematics to theoretical physics and other applications. Some parts will be accessible to proficient undergraduate students, and even to persons with a minimum of scientific knowledge but enough curiosity.