Download Free Deformable Bodies And Their Material Behavior Book in PDF and EPUB Free Download. You can read online Deformable Bodies And Their Material Behavior and write the review.

ESSENTIAL TOOLS FOR AVOIDING MATERIAL FUNCTIONAL FAILURE Offering comprehensive, organized, and detailed coverage, Henry Haslach and Ronald Armstrong’s Deformable Bodies and Their Material Behavior present a quantitative description of the mechanical behavior of a broad range of deformable bodies under widely differing conditions and at a level sufficient to match real behavior, and introduces the key tools needed to avoid material functional failure. Covering stress and deformation analysis, material failure modes, and mechanical rest evaluations of material properties, this text provides the tools, insights, and knowledge needed to build a strong foundation for the design of mechanical devices. HIGHLIGHTS Considers most types of materials: metals, ceramics, fibered composites, concrete biological tissue, rubber, polymers, and wood. Focuses on the relationships between material properties of a deformable body and the forces and displacements applied to its boundary. Helps develop an appreciation for the approximations made in producing the mathematical models intended to predict mechanical response. Provides historical background on the definitions and models that designers commonly use, describing the practical reasons why these tools were invented.
This textbook contains sections with fundamental, classical knowledge in solid mechanics, as well as original modern mathematical models to describe the state and behavior of solid deformable bodies. It has original sections with the basics of mathematical modeling in the solid mechanics, material on the basic principles, and features of mathematical formulation of model problems of solid mechanics. For successful mastering of the material, it is necessary to have basic knowledge of the relevant sections of the courses of mathematical analysis, linear algebra and tensor analysis, differential equations, and equations of mathematical physics. Each section contains a list of test questions and exercises to check the level of assimilation of the material. The textbook is intended for senior university students, postgraduates, and research fellows. It can be used in the study of general and special disciplines in various sections of solid mechanics, applied mechanics for students and undergraduates of various specializations and specialties, such as mechanics and mathematical modeling, applied mathematics, solid physics, and engineering mechanics.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Extensively revised from a successful first edition, this book features a wealth of clear illustrations, numerous worked examples, and many problem sets. It provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics, and as such will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine.
At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories.
Theoretical and experimental study of the mechanical behavior of structures under load Analysis of Engineering Structures and Material Behavior is a textbook covering introductory and advanced topics in structural analysis. It begins with an introduction to the topic, before covering fundamental concepts of stress, strain and information about mechanical testing of materials. Material behaviors, yield criteria and loads imposed on the engineering elements are also discussed. The book then moves on to cover more advanced areas including relationships between stress and strain, rheological models, creep of metallic materials and fracture mechanics. Finally, the finite element method and its applications are considered. Key features: Covers introductory and advanced topics in structural analysis, including load, stress, strain, creep, fatigue and finite element analysis of structural elements. Includes examples and considers mathematical formulations. A pedagogical approach to the topic. Analysis of Engineering Structures and Material Behavior is suitable as a textbook for structural analysis and mechanics courses in structural, civil and mechanical engineering, as well as a valuable guide for practicing engineers.
This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams. The authors take a deductive rather than inductive approach and start from a few first, foundational principles. A wide selection of exercises, many with hints and solutions, are provided throughout and organized in a way that will allow readers to form a link between abstract mathematical concepts and real-world applications. The text begins with the definition of bodies and deformations, keeping the kinematics of rigid bodies as a special case; the authors also distinguish between material and spatial metrics, defining each one in the pertinent space. Subsequent chapters cover observers and classes of possible changes; forces, torques, and related balances, which are derived from the invariance under classical changes in observers of the power of the external actions over a body, rather than postulated a priori; constitutive structures; variational principles in linear elasticity; the de Saint-Venant problem; yield criteria and a discussion of their role in the representation of material behavior; and an overview of some bifurcation phenomena, focusing on the Euler rod. An appendix on tensor algebra and tensor calculus is included for readers who need a brief refresher on these topics. Fundamentals of the Mechanics of Solids is primarily intended for graduate and advanced undergraduate students in various fields of engineering and applied mathematics. Prerequisites include basic courses in calculus, mathematical analysis, and classical mechanics.
The fourth edition of Mechanics of Materials is an in-depth yet accessible introduction to the behavior of solid materials under various stresses and strains. Emphasizing the three key concepts of deformable-body mechanics—equilibrium, material behavior, and geometry of deformation—this popular textbook covers the fundamental concepts of the subject while helping students strengthen their problem-solving skills. Throughout the text, students are taught to apply an effective four-step methodology to solve numerous example problems and understand the underlying principles of each application. Focusing primarily on the behavior of solids under static-loading conditions, the text thoroughly prepares students for subsequent courses in solids and structures involving more complex engineering analyses and Computer-Aided Engineering (CAE). The text provides ample, fully solved practice problems, real-world engineering examples, the equations that correspond to each concept, chapter summaries, procedure lists, illustrations, flow charts, diagrams, and more. This updated edition includes new Python computer code examples, problems, and homework assignments that require only basic programming knowledge.