Download Free Defects In Organic Semiconductors And Devices Book in PDF and EPUB Free Download. You can read online Defects In Organic Semiconductors And Devices and write the review.

Defects play a key role in the physical properties of semiconductors and devices, and their identification is essential in assessing the reliability of electronic devices. Defects in Organic Semiconductors and Devices introduces the fundamental aspects of defects in organic semiconductors and devices in relation to the structure of materials and architecture of electronic components. It covers the topics of defect formation and evolution, defect measurement techniques and their adaption to organic devices, the effects of defects on the physical properties of materials and their effects on the performance and lifetime of organic devices. Identifying defects and determining their characteristics in the structure of organic devices such as OLEDs, OFETs and OPVs make it possible to better understand degradation processes and develop solutions to improve the reliability of such devices. This book is intended for researchers and students in university programs or engineering schools who are specializing in electronics, energy and materials.
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.
Defect control in semiconductors is a key technology for realizing the ultimate possibilities of modern electronics. The basis of such control lies in an integrated knowledge of a variety of defect properties. From this viewpoint, the volume discusses defect-related problems in connection with defect control in semiconducting materials, such as silicon, III-V, II-VI compounds, organic semiconductors, heterostructure, etc. The conference brought together scientists in the field of fundamental research and engineers involved in application related to electronic devices in order to promote future research activity in both fields and establish a fundamental knowledge of defect control. The main emphasis of the 254 papers presented in this volume is on the control of the concentration, distribution, structural and electronic states of any types of defects including impurities as well as control of the electrical, optical and other activities of defects. Due to the extensive length of the contents, only the number of papers presented per session is listed below.
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.
Written in the perspective of an experimental chemist, this book puts together some fundamentals from chemistry, solid state physics and quantum chemistry, to help with understanding and predicting the electronic and optical properties of organic semiconductors, both polymers and small molecules. The text is intended to assist graduate students and researchers in the field of organic electronics to use theory to design more efficient materials for organic electronic devices such as organic solar cells, light emitting diodes and field effect transistors. After addressing some basic topics in solid state physics, a comprehensive introduction to molecular orbitals and band theory leads to a description of computational methods based on Hartree-Fock and density functional theory (DFT), for predicting geometry conformations, frontier levels and energy band structures. Topological defects and transport and optical properties are then addressed, and one of the most commonly used transparent conducting polymers, PEDOT:PSS, is described in some detail as a case study.
In recent decades, the way human beings interact with technology has been significantly transformed. In our daily life, ever fewer manually controlled devices are used, giving way to automatized houses, cars, and devices. A significant part of this technological revolution relies on signal detection and evaluation, placing detectors as core devices for further technological developments. This book introduces a versatile contribution to achieving light sensing: Organic Semiconductor Devices for Light Detection. The text is organized to guide the reader through the main concepts of light detection, followed by a introduction to the semiconducting properties of organic molecular solids. The sources of non-idealities in organic photodetectors are presented in chapter 5, and a new device concept, which aims to overcome some of the limitation discussed in the previous chapters, is demonstrated. Finally, an overview of the field is given with a selection of open points for future investigation.
The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.
The remarkable development of organic thin film transistors (OTFTs) has led to their emerging use in active matrix flat-panel displays, radio frequency identification cards, and sensors. Exploring one class of OTFTs, Organic Field-Effect Transistors provides a comprehensive, multidisciplinary survey of the present theory, charge transport studies, synthetic methodology, materials characterization, and current applications of organic field-effect transistors (OFETs). Covering various aspects of OFETs, the book begins with a theoretical description of charge transport in organic semiconductors at the molecular level. It then discusses the current understanding of charge transport in single-crystal devices, small molecules and oligomers, conjugated polymer devices, and charge injection issues in organic transistors. After describing the design rationales and synthetic methodologies used for organic semiconductors and dielectric materials, the book provides an overview of a variety of characterization techniques used to probe interfacial ordering, microstructure, molecular packing, and orientation crucial to device performance. It also describes the different processing techniques for molecules deposited by vacuum and solution, followed by current technological examples that employ OTFTs in their operation. Featuring respected contributors from around the world, this thorough, up-to-date volume presents both the theory behind OFETs and the latest applications of this promising technology.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.