Download Free Deep Sea Biodiversity Book in PDF and EPUB Free Download. You can read online Deep Sea Biodiversity and write the review.

Rex and Etter present the first synthesis of patterns and causes of biodiversity in organisms that dwell in the vast sediment ecosystem of ocean floor. They offer a new understanding of marine biodiversity that will be of general interest to ecologists and is crucial to responsible exploitation of natural resources at the deep-sea floor.
This book presents the biodiversity of the Brazilian deep-sea and its many unique geological and biological features, as well as a review of its ecology, conservation, and future research needs. The deep-sea Brazilian margin has an incredible geological heterogeneity with numerous characteristic seafloor features, and latitudinal changes in marine productivity, oceanographic conditions and biological communities have resulted in very distinct biological assemblages at regional and bathymetric scales. It is a tremendously rich ecosystem in terms of living species, from which many well-known historical tales have originated, and with unique importance for the global climate and humanity. Nevertheless, vast areas of the Brazilian margin have been explored for fishing, oil and gas, and other commodities, likely impacting a variety of deep-sea habitats at scales and intensities yet undetermined. This book is intended for students, scholars, professionals and a wide audience interested in the deep-sea in general and, more specifically, in the South Atlantic deep-sea.
This book compiles the main findings of the multidisciplinary long-term research program developed in the continental margin of one of the more productive and unknown areas of the world oceans, Northwest Africa. The more than 25,000 preserved fishes and benthic invertebrates and quantitative data collected in 342 trawling stations, the 267 oceanographic profiles, the 211 sediment samples and the 28,122 km2 prospected by multi˗beam echo sounding allowed to obtain an overview of the amazing biodiversity of the demersal and benthic fauna inhabiting soft- and hard-bottom habitats, as well as the fascinating geomorphology and oceanography, hidden in the Mauritanian slope.
'Marine Conservation Biology' brings together leading experts from around the world to apply the lessons and thinking of conservation biology to marine issues. The contributors cover what is threatening marine biodiversity and what humans can do to recover the biological integrity of the world's oceans.
For years scientists viewed the deep sea as calm, quiet, and undisturbed, with marine species existing in an ecologically stable and uniform environment. Recent discoveries have completely transformed that understanding and the deep sea is recognized as a complicated and dynamic environment with a rich diversity of marine species. Carefully designe
The deep sea covers over 60% of the surface of the earth, yet less than 1% has been scientifically investigated. There is growing pressure on deep-sea resources and on researchers to deliver information on biodiversity and the effects of human impacts on deep-sea ecosystems. Although scientific knowledge has increased rapidly in recent decades, there exist large gaps in global sampling coverage of the deep sea, and major efforts continue to be directed into offshore research. Biological Sampling in the Deep Sea represents the first comprehensive compilation of deep-sea sampling methodologies for a range of habitats. It reviews the real life applications of current, and in some instances developing, deep-sea sampling tools and techniques. In creating this book the authors have been able to draw upon the experiences of those at the coal face of deep-sea sampling, expanding on the existing methodological texts whilst encompassing a level of technical detail often omitted from journal publications. Ultimately the book will promote international consistency in sampling approaches and data collection, advance the integration of information into global databases, and facilitate improved data analyses and consequently uptake of science results for the management and conservation of the deep-sea environment. The book will appeal to a range of readers, including students, early-career through to seasoned researchers, as well as environmental managers and policy makers wishing to understand how the deep-sea is sampled, the challenges associated with deep survey work, and the type of information that can be obtained.
The diversity of marine life is being affected dramatically by fishery operations, chemical pollution and eutrophication, alteration of physical habitat, exotic species invasion, and effects of other human activities. Effective solutions will require an expanded understanding of the patterns and processes that control the diversity of life in the sea. Understanding Marine Biodiversity outlines the current state of our knowledge, and propose research agenda on marine biological diversity. This agenda represents a fundamental change in studying the oceanâ€"emphasizing regional research across a range of space and time scales, enhancing the interface between taxonomy and ecology, and linking oceanographic and ecological approaches. Highlighted with examples and brief case studies, this volume illustrates the depth and breadth of undescribed marine biodiversity, explores critical environmental issues, advocates the use of regionally defined model systems, and identifies a series of key biodiversity research questions. The authors examine the utility of various research approachesâ€"theory and modeling, retrospective analysis, integration of biotic and oceanographic surveysâ€"and review recent advances in molecular genetics, instrumentation, and sampling techniques applicable to the research agenda. Throughout the book the critical role of taxonomy is emphasized. Informative to the scientist and accessible to the policymaker, Understanding Marine Biodiversity will be of specific interest to marine biologists, ecologists, oceanographers, and research administrators, and to government agencies responsible for utilizing, managing, and protecting the oceans.
This book focuses on how marine systems respond to natural and anthropogenic perturbations (ENSO, overfishing, pollution, tourism, invasive species, climate-change). Authors explain in their chapters how this information can guide management and conservation actions to help orient and better manage, restore and sustain the ecosystems services and goods that are derived from the ocean, while considering the complex issues that affect the delicate nature of the Islands. This book will contribute to a new understanding of the Galapagos Islands and marine ecosystems.​
Life began in the sea, and even today most of the deep diversity of the planet is marine. This is often forgotten, especially in tropical countries like Costa Rica, renowned for their rain forests and the multitude of life forms found therein. Thus this book focusing on marine diversity of Costa Rica is particularly welcome. How many marine species are there in Costa Rica? The authors report a total of 6,777 species, or 3. 5% of the world’s total. Yet the vast majority of marine species have yet to be formally described. Recent estimates of the numbers of species on coral reefs range from 1–9 million, so that the true number of marine species in Costa Rica is certainly far higher. In some groups the numbers are likely to be vastly higher because to date they have been so little studied. Only one species of nematode is reported, despite the fact that it has been said that nematodes are the most diverse of all marine groups. In better studied groups such as mollusks and crustaceans, reported numbers are in the thousands, but even in these groups many species remain to be described. Indeed the task of describing marine species is daunting – if there really are about 9 million marine species and Costa Rica has 3. 5% of them, then the total number would be over 300,000. Clearly, so much remains to be done that new approaches are needed. Genetic methods have en- mous promise in this regard.