Download Free Deep Reinforcement Learning Based Energy Efficient Multi Uav Data Collection For Iot Networks Book in PDF and EPUB Free Download. You can read online Deep Reinforcement Learning Based Energy Efficient Multi Uav Data Collection For Iot Networks and write the review.

This book constitutes the refereed post-conference proceedings of the Second International Conference on Pan-African Intelligence and Smart Systems, PAAISS 2022, which was held in Dakar, Senegal, in November 2022. The 27 revised full papers presented were carefully selected from 70 submissions. The theme of PAAISS 2022 was: ​IoT and Enabling Smart System Technologies, Special Topics of African Interest, Artificial Intelligence Theory and Methods, Artificial Intelligence Applications in Medicine, Remote sensing and AI in Agriculture, AI applications and Smart Systems technologies, Affective Computing, Intelligent Transportation systems.
Deep Learning (DL) is an effective approach for AI-based vehicular networks and can deliver a powerful set of tools for such vehicular network dynamics. In various domains of vehicular networks, DL can be used for learning-based channel estimation, traffic flow prediction, vehicle trajectory prediction, location-prediction-based scheduling and routing, intelligent network congestion control mechanism, smart load balancing and vertical handoff control, intelligent network security strategies, virtual smart and efficient resource allocation and intelligent distributed resource allocation methods. This book is based on the work from world-famous experts on the application of DL for vehicle networks. It consists of the following five parts: (I) DL for vehicle safety and security: This part covers the use of DL algorithms for vehicle safety or security. (II) DL for effective vehicle communications: Vehicle networks consist of vehicle-to-vehicle and vehicle-to-roadside communications. This part covers how Intelligent vehicle networks require a flexible selection of the best path across all vehicles, adaptive sending rate control based on bandwidth availability and timely data downloads from a roadside base-station. (III) DL for vehicle control: The myriad operations that require intelligent control for each individual vehicle are discussed in this part. This also includes emission control, which is based on the road traffic situation, the charging pile load is predicted through DL andvehicle speed adjustments based on the camera-captured image analysis. (IV) DL for information management: This part covers some intelligent information collection and understanding. We can use DL for energy-saving vehicle trajectory control based on the road traffic situation and given destination information; we can also natural language processing based on DL algorithm for automatic internet of things (IoT) search during driving. (V) Other applications. This part introduces the use of DL models for other vehicle controls. Autonomous vehicles are becoming more and more popular in society. The DL and its variants will play greater roles in cognitive vehicle communications and control. Other machine learning models such as deep reinforcement learning will also facilitate intelligent vehicle behavior understanding and adjustment. This book will become a valuable reference to your understanding of this critical field.
A comprehensive treatment of Age of Information, this cutting-edge text includes detailed exposition and real-world applications.
This book constitutes the refereed proceedings of the Fourth International Conference on Futuristic Trends in Network and Communication Technologies, FTNCT 2021. The prime aim of the conference is to invite researchers from different domains of network and communication technologies to a single platform to showcase their research ideas. The selected papers are organized in topical sections on network and computing technologies; wireless networks and Internet of Things (IoT); futuristic computing technologies; communication technologies, security, and privacy. The volume will serve as a reference resource for researchers and practitioners in academia and industry.
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
UNMANNED AERIAL VEHICLES FOR INTERNET OF THINGS This comprehensive book deeply discusses the theoretical and technical issues of unmanned aerial vehicles for deployment by industries and civil authorities in Internet of Things (IoT) systems. Unmanned aerial vehicles (UAVs) has become one of the rapidly growing areas of technology, with widespread applications covering various domains. UAVs play a very important role in delivering Internet of Things (IoT) services in small and low-power devices such as sensors, cameras, GPS receivers, etc. These devices are energy-constrained and are unable to communicate over long distances. The UAVs work dynamically for IoT applications in which they collect data and transmit it to other devices that are out of communication range. Furthermore, the benefits of the UAV include deployment at remote locations, the ability to carry flexible payloads, reprogrammability during tasks, and the ability to sense for anything from anywhere. Using IoT technologies, a UAV may be observed as a terminal device connected with the ubiquitous network, where many other UAVs are communicating, navigating, controlling, and surveilling in real time and beyond line-of-sight. The aim of the 15 chapters in this book help to realize the full potential of UAVs for the IoT by addressing its numerous concepts, issues and challenges, and develops conceptual and technological solutions for handling them. Applications include such fields as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. In addition, the book covers: Efficient energy management systems in UAV-based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety. Audience: Researchers in computer science, Internet of Things (IoT), electronics engineering, as well as industries that use and deploy drones and other unmanned aerial vehicles.
Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention outlines how nanotechnology and space technology could be applied for the detection of disaster risks in early stages, using cheap sensors, cheap constellations of low Earth orbit (LEO) satellites, and smart wireless networks with artificial intelligence (AI) tools. Nanomaterial-based sensors (nanosensors) can offer several advantages over their micro-counterparts, such as lower power or self-powered consumption, high sensitivity, lower concentration of analytes, and smaller interaction distances between the object and the sensor. Besides this, with the support of AI tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems are becoming smarter when a large number of sensors are used. This book is an important reference source for materials scientists, engineers, and environmental scientists who are seeking to understand how nanotechnology-based solutions can help mitigate natural disasters. - Shows how nanotechnology-based solutions can be combined with space technology to provide more effective disaster management solutions - Explores the best materials for manufacturing different types of nanotechnology-based remote sensing devices - Assesses the challenges of creating a nanotechnology-based disaster mitigation system in a cost-effective way
A comprehensive introduction to architecture design, protocol optimization, and application development.