Download Free Decommissioning Of Nuclear Power Plants Research Reactors And Other Nuclear Fuel Cycle Facilities Book in PDF and EPUB Free Download. You can read online Decommissioning Of Nuclear Power Plants Research Reactors And Other Nuclear Fuel Cycle Facilities and write the review.

In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.
Once a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any significant health and environmental risks exist.This book critically reviews the nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities. Part one focuses on the fundamental planning issues in starting a nuclear decommissioning process, from principles and safety regulations, to financing and project management. Part two covers the execution phase of nuclear decommissioning projects, detailing processes and technologies such as dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse. Finally, part three details international experience in the decommissioning of nuclear applications, including the main nuclear reactor types and nuclear fuel cycle facilities, as well as small nuclear facilities and legacy nuclear waste sites. - Critically reviews nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities - Discusses the fundamental planning issues in starting a nuclear decommissioning process - Considers the execution phase of nuclear decommissioning projects, including dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse
As part of the Action Plan on Nuclear Safety, the IAEA led the International Project on Managing the Decommissioning and Remediation of Damaged Nuclear Facilities (DAROD Project). The DAROD Project focuses on providing practical guidance for the decommissioning and remediation of accident damaged nuclear facilities based on case studies of actual damaged facilities and lessons learned. This publication summarizes the outcomes of the DAROD Project. It is intended for regulatory bodies, operating organizations, technical support organizations and governmental officials who are involved in the decommissioning and remediation of nuclear facilities damaged after an accident or owing to a legacy deterioration.
The main aim of this publication is to disseminate experience in and guidance on cost estimates for research reactor decommissioning projects. It presents the principles and background for a costing methodology based on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations. The methodology presented implements actual experience in decommissioning costing and is in line with IAEA efforts promoting harmonization in this field. The IAEA has contributed to the development of software called CERREX (Cost Estimate for Research Reactors in Excel), a simpler version suitable for preliminary costing stages, which is included on the attached CD-ROM, together with a user manual. Several practical examples of software implementation and clarification of some details of available methodologies and models are also provided.
This is the first report published by the IAEA which provides guidance on the preparation and implementation of the decommissioning of different types of research reactor. Different construction and operational features of research reactors have a major impact on the decommissioning techniques required. This report offers information on the conclusions drawn from a number of completed projects and identifies their similarities and differences. It is complemented by a computerized research reactor databank. Staff requirements, decommissioning costs waste activity are presented graphically according to reactor thermal power and integrated energy.
Cost estimation for the decommissioning of nuclear facilities can vary considerably in format, content and practice both within and across countries. These differences may have legitimate reasons but make the process of reviewing estimates complicated and the estimates themselves difficult to defend. Hence, the joint initiative of the OECD Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission (EC) was undertaken to propose a standard itemisation of decommissioning costs either directly for the production of cost estimates or for mapping estimates onto a standard, common structure for purposes of comparison. This report updates the earlier itemisation published in 1999 and takes into account experience accumulated thus far. The revised cost itemisation structure has sought to ensure that all costs within the planned scope of a decommissioning project may be reflected. The report also provides general guidance on developing a decommissioning cost estimate, including detailed advice on using the structure.
This safety report publication provides specific guidance on the management of project risks in decommissioning. The publication proposes a systematic and pro-active approach on how to identify, analyse, evaluate, and treat relevant project risks at strategic and operational levels, and provides examples of application of the proposed approach
Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning.