Download Free Decoding Wireless Communications Book in PDF and EPUB Free Download. You can read online Decoding Wireless Communications and write the review.

Step into the captivating context of wireless technology with “Decoding Wireless Communications: Bridging Technology and Everyday Life.” Even if you are new to telecommunication engineering, this book makes the journey accessible and engaging. Through relatable analogies and insightful explanations, complex concepts become clear and relatable. Picture wireless networks as bustling cafes, and diversity techniques as the harmonious interplay of musicians in a band. Each chapter unfolds seamlessly, from combating interference with equalizers to navigating the multitasking marvels of Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM). Explore the boundaries of wireless capacity and glimpse the future of 5G, Artificial Intelligence (AI), and the Internet of Things (IoT). Whether you are a curious beginner or a seasoned professional, this book promises an enlightening journey. With its blend of practical insights and thought-provoking reflections, “Decoding Wireless Communications” is your indispensable guide to thriving in our interconnected world. Prepare to be inspired and equipped with the knowledge to decode the intricacies of wireless technology. Grab your copy now and set forth on a journey of discovery that seamlessly intertwines technology with the fabric of everyday life.
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
Wireless channels are becoming more and more important, with the future development of wireless ad-hoc networks and the integration of mobile and satellite communications. To this end, algorithmic detection aspects (involved in the physical layer) will become fundamental in the design of a communication system. This book proposes a unified approach to detection for stochastic channels, with particular attention to wireless channels. The core idea is to show that the three main criteria of sequence detection, symbol detection and graph-based detection, can all be described within a general framework. This implies that a detection algorithm based on one criterion can be extended to the other criteria in a systematic manner. Presents a detailed analysis of statistical signal detection for digital signals transmitted over wireless communications Provides a unifying framework for different signal detection algorithms, such as sequence detection, symbol detection and graph-based detection, important for the design of modern digital receivers operating over mobile channels Features the hot topic of graph-based detection Detection Algorithms for Wireless Communications represents a novel contribution with respect to the current literature, with a unique focus on detection algorithms, as such it will prove invaluable to researchers working in academia and industry and in the field of wireless communications, as well as postgraduate students attending advanced courses on mobile communications.
This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated. Comprehensive wireless specific guide to algorithmic techniques Provides a detailed analysis of channel equalization and channel coding for wireless applications Unique conceptual approach focusing in single user systems Covers algebraic decoding, modulation techniques, channel coding and channel equalisation
Preface. Abbreviations. 1. Introduction to modulation and coding. 2. Principles of linear modulation. 3. Modulation for non-linear systems. 4. Modem design. 5. Principles of FEC Coding. 6. Cyclic block codes. 7. Convolutionals codes. 8. Coded modulation. 9. Modulation and coding on multipath channels. 10. OFDM. 11. Turbo-codes. Appendix 1. Finite field theory. Appendix 2. The MAP algorithm.
Eine vielversprechende Technologie zur Maximierung der Bandbreiteneffizienz in der breitbandigen drahtlosen Kommunikation ist die Raum-Zeit-Kodierung. Theorie und Praxis verbindend, ist dieses Buch die erste umfassende Diskussion von Grundlagen und designorientierten Aspekten von Raum-Zeit-Codes. Single-Carrier und Multi-Carrier-Übertragungen für Einzel- und Mehrnutzerkommunikation werden behandelt.
Accessible introduction to the theoretical foundations of modern coding theory Including numerous applications to wireless transmission systems The author is famous in the field of coding and wireless communications for his work in the area of faded channels & communcations.
Space-time coding techniques play a major role in modern wireless communication systems since they can achieve very high data transmission rates. Designing efficient algorithms to implement these techniques is a significant challenge, and there is currently a great amount of interest in sphere decoding algorithms in this context. This book will describe efficient algorithms for detection and decoding, focussing on receivers in wireless communication systems. The complexity and design of sphere decoding algorithms will be discussed in detail, and their performance analyzed. The book is aimed at researchers and graduate students of electrical engineering and computer science. It will also appeal to practitioners in the wireless industry.
Adaptive techniques play a key role in modern wireless communication systems. The concept of adaptation is emphasized in the Adaptation in Wireless Communications Series through a unified framework across all layers of the wireless protocol stack ranging from the physical layer to the application layer, and from cellular systems to next-generation wireless networks. This specific volume, Adaptive Signal Processing in Wireless Communications is devoted to adaptation in the physical layer. It gives an in-depth survey of adaptive signal processing techniques used in current and future generations of wireless communication systems. Featuring the work of leading international experts, it covers adaptive channel modeling, identification and equalization, adaptive modulation and coding, adaptive multiple-input-multiple-output (MIMO) systems, and cooperative diversity. It also addresses other important aspects of adaptation in wireless communications such as hardware implementation, reconfigurable processing, and cognitive radio. A second volume in the series, Adaptation and Cross-layer Design in Wireless Networks(cat no.46039) is devoted to adaptation in the data link, network, and application layers.
This book discusses the latest channel coding techniques, MIMO systems, and 5G channel coding evolution. It provides a comprehensive overview of channel coding, covering modern techniques such as turbo codes, low-density parity-check (LDPC) codes, space–time coding, polar codes, LT codes, and Raptor codes as well as the traditional codes such as cyclic codes, BCH, RS codes, and convolutional codes. It also explores MIMO communications, which is an effective method for high-speed or high-reliability wireless communications. It also examines the evolution of 5G channel coding techniques. Each of the 13 chapters features numerous illustrative examples for easy understanding of the coding techniques, and MATLAB-based programs are integrated in the text to enhance readers’ grasp of the underlying theories. Further, PC-based MATLAB m-files for illustrative examples are included for students and researchers involved in advanced and current concepts of coding theory.