Download Free Decidable Theories Book in PDF and EPUB Free Download. You can read online Decidable Theories and write the review.

Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The book includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable and lively way.
Recursive Model Theory
The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.
A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.
Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory is the type spectrum of some homogeneous model of . Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.
Recursive Functions and Metamathematics deals with problems of the completeness and decidability of theories, using as its main tool the theory of recursive functions. This theory is first introduced and discussed. Then Gödel's incompleteness theorems are presented, together with generalizations, strengthenings, and the decidability theory. The book also considers the historical and philosophical context of these issues and their philosophical and methodological consequences. Recent results and trends have been included, such as undecidable sentences of mathematical content, reverse mathematics. All the main results are presented in detail. The book is self-contained and presupposes only some knowledge of elementary mathematical logic. There is an extensive bibliography. Readership: Scholars and advanced students of logic, mathematics, philosophy of science.
In part I we address the question: which varieties have a decidable first order theory? We confine our attention to varieties whose algebras have modular congruence lattices (i.e., modular varieties), and focus primarily on locally finite varieties, although near the end of the paper Zamjatin's description of all decidable varieties of groups and rings, and offer a new proof of it. In part II, we show that if a variety admits such sheaf representations using only finitely many stalks, all of which are finite, then the variety can be decomposed in the product of a discriminator variety and an abelian variety. We continue this investigation by looking at well-known specializations of the sheaf construction, namely Boolean powers and sub-Boolean powers, giving special emphasis to quasi-primal algebras A, such that the sub-Boolean powers of A form a variety (this extends the work of Arens and Kaplansky on finite fields).