Download Free Databook Of Flame Retardants Book in PDF and EPUB Free Download. You can read online Databook Of Flame Retardants and write the review.

Databook of Flame Retardants contains information on commonly-used additives broken out into five sections, including General, Physical, Health and Safety, Ecological, and Use. Over one hundred types of data are included for over three hundred and fifty commercial-based products. All data fields are defined and include a broad range of information, such as calcium contents, molecular mass, brightness, freezing/melting points, viscosity, volatility, UN/NA class, autoignition temperature, partition coefficient, processing methods, concentrations used, and more. This book is best utilized in tandem with the Handbook of Flame Retardants.Each book complements the other without repeating information, with the other release explaining the role of these products, their selection, mechanism of action, use in different polymers and products, and health and commercial issues related to flame retardants. - Provides key physical, health and safety, ecological, and application data for over 350 commonly-used fire retardant additives - Covers halogenated, inorganic, phosphorus, intumescent, and nitrogen-based fire retardants - Data listed includes CAS #, chemical class and name, decomposition temperature, electrical conductivity, IMDG class, biodegradation probability, product and resin recommendations, guidelines for use, and more
Handbook of Flame Retardants contains an extensive evaluation of the existing literature, products and patents related to flame retardance. As a perfect complement to The Databook of Flame Retardants, this book explains the roles, selection, mechanisms of action, use in different polymers and products, and health and environmental issues of over 350 different products. Chapters highlight the fundamentals of material burning and the associated stages of heat, flame and smoke, properties and mechanisms, and preventive, delaying and extinguishing attributes of 27 chemical groups of flame retardants. Examples of synergistic and antagonistic actions of various additives are discussed next, along with testing methods. The book concludes with chapters providing guidance on optimal selection of flame retardants for various polymers and information on the toxicity of flame retardants and their effects on the environment. - Evaluates the existing literature, products and patents related to flame retardance - Covers the fundamentals of material burning and associated stages of heat, flame and smoke - Outlines and evaluates the properties of 27 chemical groups of flame retardants - Provides examples of synergistic and antagonistic actions of various additives - Looks at methods of testing flame retardants and quantifies their effect on products
Handbook of Plasticizers, Fourth Edition provides a comprehensive review of the current literature as well as cutting-edge details on plasticizers obtained from renewable resources. The book specifies the typical properties of plasticizers belonging to one of thirty-one groups, including expected properties in a given group. The mechanisms of plasticizers, plasticization production steps, and their material behavior in plasticized systems are outlined, along with theoretical background to help readers understand practical observations and methods of material improvement. Other chapters cover the effects on the physical and mechanical properties of plasticized materials, their use in polymers, processing defects formation, and more. This is an essential professional reference, providing R&D scientists, production chemists, and engineers the information they need to avoid certain plasticizers in applications where they may cause health or material durability problems. In addition, the book shows readers how and where to use plasticizers more effectively. - Provides detailed coverage of thirty-one groups of plasticizers, covering their properties, production, processing, applications, health and environmental aspects - Contains new material on odors in plastic materials and their removal - Includes expanded coverage of plasticizers from renewable resources
A one-stop, practical handbook containing all of the current commercial non-halogenated flame retardant technologies as well as experimental systems near commercialization In response to the emphasis on replacing halogenated flame retardants with alternate technologies, this handbook focuses on existing non-halogenated flame retardants and the experimental close-to-production systems that are available today. The Non-Halogenated Flame Retardant Handbook starts with an overview of the regulations and customer perceptions driving non-halogenated flame retardant selections over older halogenated technologies. It then moves on to cover the known major classes of non-halogenated flame retardants, before concluding with the current niche-performing technologies and untried commercial contenders of the future. The Non-Halogenated Flame Retardant Handbook: Takes a practical approach to addressing the narrow subject of non-halogenated flame retardancy—placing more emphasis on flame retardant selection for specific plastics, practical considerations in flame retardant material design, and the various technologies’ strengths and limits Focuses on the proper use of non-halogenated flame retardants, rather than the mechanics of how they work Discusses important future trends in flame retardancy Features sections written by industrial and chemical experts who know how to apply the technology to polymers for fire safety needs
The third edition of Fire Retardancy of Polymeric Materials provides a single source for all aspects of this highly challenging field of applied research. This authoritative book covers design and non-fire requirements that drive how these materials are fire protected. Detailed study and consideration of chemistry, physics, materials science, economic issues and fire safety science is necessary to address considerations of mechanical, thermal, environmental, and end-use requirements on top of fire protection means that the field requires. This thoroughly revised new edition continues to offer comprehensive coverage of the scientific approach for those developing fire safe materials. It covers new topics such as bio-based materials, regulatory issues, recycling, newer flame retardant chemical classes, and more details on how to flame retard materials for specific market applications. Written by a team of experts, this book covers the fundamentals of polymer burning and combustion and how to apply fire protection or flame-retardant chemistries to specific material classes and applications. The book is written for material scientists and fire safety scientists who seek to develop new fire safe materials or understand why materials burn in our modern environment. Features Connects fundamentals of material flammability to practical fire safety needs Covers current fire safety requirements and regulations affecting flame retardant selection Provides information on chemical structure-property relationships for flame retardancy Provides practical guidance on how to design fire safe materials for specific fire risk scenarios The new edition is expanded to 32 chapters and all chapters are updated and revised with the newest information
Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics.
NON-HALOGENATED FLAME RETARDANT HANDBOOK The 2nd edition of the definitive single book of information, regulations, and how to use non-halogenated flame retardant technology. This book focuses on non-halogenated flame retardants with an emphasis on practical and applied issues, and builds upon the 1st edition, but is not just a re-do/re-edit of 1st/sup edition content. While non-halogenated flame retardants have not greatly changed since the 1st edition was published in 2014, there have been enough advances and changes to merit a 2nd edition. The book includes chapters on regulation and drivers for non-halogenated flame retardants, specific chapters on each of the major classes of flame retardants, as well as some newer technologies/niche non-halogenated solutions which are either starting to enter the market (coatings / bio-derived flame retardants) or are at least being studied with enough detail to bring to the attention of the reader. As with the 1st edition, the 2nd edition still takes a practical approach to addressing the narrow subject of non-halogenated flame retardancy. It includes more emphasis on flame retardant selection for specific plastics, practical considerations in flame retardant material design, and what the strengths and limits of these various technologies are. Previous flame retardant material science books have covered non-halogenated flame retardants, but they focus more on how they work rather than how to use them. This book focuses more on the practical uses, hence the title of the book “Handbook”, which should make it of good use to industrial chemists and material scientists. Audience The primary audience is material scientists, industrial chemists, fire safety engineers who have to meet flame retardant needs to sell products. It will also be useful to academics working to develop new flame retardant solutions.