Download Free Data Warehousing And E Commerce Book in PDF and EPUB Free Download. You can read online Data Warehousing And E Commerce and write the review.

Dyche presents the complete manager's briefing on what data warehousing technology can do today and how to achieve optimal results. Using real-world case studies from Charles Schwab, Bank of America, Qantas, 20th Century Fox, and others, she covers decision support, database marketing, and many industry-specific data warehouse applications.
You go online to buy a digital camera. Soon, you realize you've bought a more expensive camera than intended, along with extra batteries, charger, and graphics software-all at the prompting of the retailer. Happy with your purchases? The retailer certainly is, and if you are too, you both can be said to be the beneficiaries of "customer intimacy" achieved through the transformation of data collected during this visit or stored from previous visits into real business intelligence that can be exercised in real time. Data Warehousing and Business Intelligence for e-Commerce is a practical exploration of the technological innovations through which traditional data warehousing is brought to bear on this and other less modest e-commerce applications, such as those at work in B2B, G2C, B2G, and B2E models. The authors examine the core technologies and commercial products in use today, providing a nuts-and-bolts understanding of how you can deploy customer and product data in ways that meet the unique requirements of the online marketplace-particularly if you are part of a brick-and-mortar company with specific online aspirations. In so doing, they build a powerful case for investment in and aggressive development of these approaches, which are likely to separate winners from losers as e-commerce grows and matures.* Includes the latest from successful data warehousing consultants whose work has encouraged the field's new focus on e-commerce.* Presents information that is written for both consultants and practitioners in companies of all sizes.* Emphasizes the special needs and opportunities of traditional brick-and-mortar businesses that are going online or participating in B2B supply chains or e-marketplaces.* Explains how long-standing assumptions about data warehousing have to be rethought in light of emerging business models that depend on customer intimacy.* Provides advice on maintaining data quality and integrity in environments marked by extensive customer self-input.* Advocates careful planning that will help both old economy and new economy companies develop long-lived and successful e-commerce strategies.* Focuses on data warehousing for emerging e-commerce areas such as e-government and B2E environments.
Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.
For undergraduate/graduate-level Data Mining or Data Warehousing courses in Information Systems or Operations Management Departments electives. Taking a multidisciplinary user/manager approach, this text looks at data warehousing technologies necessary to support the business processes of the twenty-first century. Using a balanced professional and conversational approach, it explores the basic concepts of data mining, warehousing, and visualization with an emphasis on both technical and managerial issues and the implication of these modern emerging technologies on those issues. Data mining and visualization exercises using an included fully-enabled, but time-limited version of Megaputer's PolyAnalyst and TextAnalyst data mining and visualization software give students hands-on experience with real-world applications.
Strategies for leveraging information technologies to improve customer relationships With E-business comes the opportunity for companies to really get to know their customers--who they are and their buying patterns. Business managers need an integrated strategy that supports customers from the moment they enter the front door--or Web site--right through to fulfillment, support, and promotion of new products and services. Along the way, IT managers need an integrated set of technologies--from Web sites to databases and data mining tools--to make all of this work. This book shows both IT and business managers how to match business strategies to the technologies needed to make them work. Claudia Imhoff helped pioneer this set of technologies, called the Corporate Information Factory (CIF). She and her coauthors take readers step-by-step through the process of using the CIF for creating a customer-focused enterprise in which the end results are increased market share and improved customer satisfaction and retention. They show how the CIF can be used to ensure accuracy, identify customer needs, tailor promotions, and more.
Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants.
Provides developments and research, as well as current innovative activities in data warehousing and mining, focusing on the intersection of data warehousing and business intelligence.
Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.