Download Free Data Uncertainty And Important Measures Book in PDF and EPUB Free Download. You can read online Data Uncertainty And Important Measures and write the review.

The first part of the book defines the concept of uncertainties and the mathematical frameworks that will be used for uncertainty modeling. The application to system reliability assessment illustrates the concept. In the second part, evidential networks as a new tool to model uncertainty in reliability and risk analysis is proposed and described. Then it is applied on SIS performance assessment and in risk analysis of a heat sink. In the third part, Bayesian and evidential networks are used to deal with important measures evaluation in the context of uncertainties.
The first part of the book defines the concept of uncertainties and the mathematical frameworks that will be used for uncertainty modeling. The application to system reliability assessment illustrates the concept. In the second part, evidential networks as a new tool to model uncertainty in reliability and risk analysis is proposed and described. Then it is applied on SIS performance assessment and in risk analysis of a heat sink. In the third part, Bayesian and evidential networks are used to deal with important measures evaluation in the context of uncertainties.
Now updated with new research and even more intuitive explanations, a demystifying explanation of how managers can inform themselves to make less risky, more profitable business decisions This insightful and eloquent book will show you how to measure those things in your own business that, until now, you may have considered "immeasurable," including customer satisfaction, organizational flexibility, technology risk, and technology ROI. Adds even more intuitive explanations of powerful measurement methods and shows how they can be applied to areas such as risk management and customer satisfaction Continues to boldly assert that any perception of "immeasurability" is based on certain popular misconceptions about measurement and measurement methods Shows the common reasoning for calling something immeasurable, and sets out to correct those ideas Offers practical methods for measuring a variety of "intangibles" Adds recent research, especially in regards to methods that seem like measurement, but are in fact a kind of "placebo effect" for management – and explains how to tell effective methods from management mythology Written by recognized expert Douglas Hubbard-creator of Applied Information Economics-How to Measure Anything, Second Edition illustrates how the author has used his approach across various industries and how any problem, no matter how difficult, ill defined, or uncertain can lend itself to measurement using proven methods.
With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.
This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.
The authors investigate the effects that different representations of epistemic uncertainty have on practical risk assessment problems. Two different application problems are considered: 1. the estimation of component importance measures in the presence of epistemic uncertainties; 2. the propagation of uncertainties through a risk flooding model. The focus is on the epistemic uncertainty affecting the parameters of the models that describe the components’ failures due to incomplete knowledge of their values. This epistemic uncertainty is represented using probability distributions when sufficient data is available for statistical analysis, and by possibility distributions when the information available to define the parameters’ values comes from experts, in the form of imprecise quantitative statements or judgments. Three case studies of increasing complexity are presented:  a pedagogical example of importance measure assessment on a three-component system from the literature;  assessment of importance measures for the auxiliary feed water system of a nuclear pressurized water reactor;  an application in environmental modelling, with an analysis of uncertainty propagation in a hydraulic model for the risk-based design of a flood protection dike.
Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.
For the lab/experimentation course in physics depts. and/or any course in physics, chemistry, geology, etc. with a lab component focusing on data and error analysis. Designed to help science students process data without lengthy and boring computations, this text/disk package provides useful algorithms and programs that allow students to do analysis more quickly than was previously possible. Using a "learn by doing" approach, it provides simple, handy rules for handling data and estimating errors both by graphical and analytic methods without long discussions and involved theoretical derivations.
This hands-on guide is primarily intended to be used in undergraduate laboratories in the physical sciences and engineering. It assumes no prior knowledge of statistics. It introduces the necessary concepts where needed, with key points illustrated with worked examples and graphic illustrations. In contrast to traditional mathematical treatments it uses a combination of spreadsheet and calculus-based approaches, suitable as a quick and easy on-the-spot reference. The emphasis throughout is on practical strategies to be adopted in the laboratory. Error analysis is introduced at a level accessible to school leavers, and carried through to research level. Error calculation and propagation is presented though a series of rules-of-thumb, look-up tables and approaches amenable to computer analysis. The general approach uses the chi-square statistic extensively. Particular attention is given to hypothesis testing and extraction of parameters and their uncertainties by fitting mathematical models to experimental data. Routines implemented by most contemporary data analysis packages are analysed and explained. The book finishes with a discussion of advanced fitting strategies and an introduction to Bayesian analysis.
With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.