Download Free Data Transmission And Privacy Book in PDF and EPUB Free Download. You can read online Data Transmission And Privacy and write the review.

Blockchain technology is defined as a decentralized system of distributed registers that are used to record data transactions on multiple computers. The reason this technology has gained popularity is that you can put any digital asset or transaction in the blocking chain, the industry does not matter. Blockchain technology has infiltrated all areas of our lives, from manufacturing to healthcare and beyond. Cybersecurity is an industry that has been significantly affected by this technology and may be more so in the future. Blockchain for Cybersecurity and Privacy: Architectures, Challenges, and Applications is an invaluable resource to discover the blockchain applications for cybersecurity and privacy. The purpose of this book is to improve the awareness of readers about blockchain technology applications for cybersecurity and privacy. This book focuses on the fundamentals, architectures, and challenges of adopting blockchain for cybersecurity. Readers will discover different applications of blockchain for cybersecurity in IoT and healthcare. The book also includes some case studies of the blockchain for e-commerce online payment, retention payment system, and digital forensics. The book offers comprehensive coverage of the most essential topics, including: Blockchain architectures and challenges Blockchain threats and vulnerabilities Blockchain security and potential future use cases Blockchain for securing Internet of Things Blockchain for cybersecurity in healthcare Blockchain in facilitating payment system security and privacy This book comprises a number of state-of-the-art contributions from both scientists and practitioners working in the fields of blockchain technology and cybersecurity. It aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this particular area or those interested in grasping its diverse facets and exploring the latest advances on the blockchain for cybersecurity and privacy.
Security and Privacy Issues in IoT Devices and Sensor Networks investigates security breach issues in IoT and sensor networks, exploring various solutions. The book follows a two-fold approach, first focusing on the fundamentals and theory surrounding sensor networks and IoT security. It then explores practical solutions that can be implemented to develop security for these elements, providing case studies to enhance understanding. Machine learning techniques are covered, as well as other security paradigms, such as cloud security and cryptocurrency technologies. The book highlights how these techniques can be applied to identify attacks and vulnerabilities, preserve privacy, and enhance data security. This in-depth reference is ideal for industry professionals dealing with WSN and IoT systems who want to enhance the security of these systems. Additionally, researchers, material developers and technology specialists dealing with the multifarious aspects of data privacy and security enhancement will benefit from the book's comprehensive information. - Provides insights into the latest research trends and theory in the field of sensor networks and IoT security - Presents machine learning-based solutions for data security enhancement - Discusses the challenges to implement various security techniques - Informs on how analytics can be used in security and privacy
In the realm of health care, privacy protections are needed to preserve patients' dignity and prevent possible harms. Ten years ago, to address these concerns as well as set guidelines for ethical health research, Congress called for a set of federal standards now known as the HIPAA Privacy Rule. In its 2009 report, Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, the Institute of Medicine's Committee on Health Research and the Privacy of Health Information concludes that the HIPAA Privacy Rule does not protect privacy as well as it should, and that it impedes important health research.
Modern society is rapidly becoming fully digitalized. This has many benefits, but unfortunately, it also means that personal privacy is threatened. The threat does not so much come from a 1984 style Big Brother but rather from a set of smaller big brothers. These small big brothers are companies that we interact with - public services and institutions - and that we invite to our private data. Privacy as a subject can be problematic as it is a personal freedom. In this book, we do not take a political stand on personal privacy and what level of personal freedom and privacy is the correct one. The text instead focuses on understanding what privacy is and some of the technologies that may help us to regain a bit of privacy. It discusses what the different aspects of privacy may be and why privacy needs to be there by default. There are boundaries between personal privacy and societal requirements, and inevitably society will set limits to our privacy (Lawful Interception, etc.). There are technologies that are specifically designed to help us regain some digital privacy. These are commonly known as Privacy Enhancing Technologies (PETs). Aspects of Personal Privacy in Communications investigates some of these PETs, including MIX networks, Onion Routing, and various privacy-preserving methods. Other aspects include identity and location privacy in cellular systems, privacy in RFID, Internet-of-Things (IoT), and sensor networks amongst others. The text also covers some aspects of cloud systems.
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
As big data becomes increasingly pervasive and cloud computing utilization becomes the norm, the security and privacy of our systems and data becomes more critical with emerging security and privacy threats and challenges. This book presents a comprehensive view on how to advance security and privacy in big data, cloud computing, and their applications. Topics include cryptographic tools, SDN security, big data security in IoT, privacy preserving in big data, security architecture based on cyber kill chain, privacy-aware digital forensics, trustworthy computing, privacy verification based on machine learning, and chaos-based communication systems. This book is an essential reading for networking, computing, and communications professionals, researchers, students and engineers, working with big data and cloud computing.
Businesses in today’s world are adopting technology-enabled operating models that aim to improve growth, revenue, and identify emerging markets. However, most of these businesses are not suited to defend themselves from the cyber risks that come with these data-driven practices. To further prevent these threats, they need to have a complete understanding of modern network security solutions and the ability to manage, address, and respond to security breaches. The Handbook of Research on Intrusion Detection Systems provides emerging research exploring the theoretical and practical aspects of prominent and effective techniques used to detect and contain breaches within the fields of data science and cybersecurity. Featuring coverage on a broad range of topics such as botnet detection, cryptography, and access control models, this book is ideally designed for security analysts, scientists, researchers, programmers, developers, IT professionals, scholars, students, administrators, and faculty members seeking research on current advancements in network security technology.