Download Free Data Sharing Book in PDF and EPUB Free Download. You can read online Data Sharing and write the review.

The right to privacy is a fundamental right. Along with the related right to personal data protection, it has come to take a central place in contemporary employment relations and shows significant relevance for the future of work. This thoroughly researched volume, which offers insightful essays by leading European academics and policymakers in labour and employment law, is the first to present a thoroughly up-to-date Europe-wide survey and analysis of the intensive and growing interaction of workplace relations systems with developments in privacy law. With abundant reference to the EU’s General Data Protection Regulation, the case law of the European Court of Human Rights, and the work of the International Labour Organisation, the book proceeds as a series of country chapters, each by a recognised expert in a specific jurisdiction. Legal comparison is based on a questionnaire circulated to the contributors in advance. Each country chapter addresses the national legal weight of such issues and topics as the following: interaction of privacy and data protection law; legitimacy, purpose limitation, and data minimisation; transparency; role of consent; artificial intelligence and automated decision-making; health-related data, including biometrics and psychological testing; monitoring and surveillance; and use of social media. A detailed introductory overview begins the volume. The research for this book is based on a dynamic methodology, founded in scientific desk research and expert networking. Recognising that the need for further guidance for privacy at work has been demonstrated by various European and international bodies, this book delivers a signal contribution to the field for social partners, practitioners, policymakers, scholars, and all other stakeholders working at the crossroads of privacy, data protection, and labour law.
Data Sharing Using a Common Data Architecture Wouldn’t it be a pleasure to know and understand all the data in your organization? Wouldn’t it be great to easily identify and readily share those data to develop information that supports business strategies? Wouldn’t it be wonderful to have a formal data resource that provides just-in-time data for developing just-in-time information to support just-in-time decision making? Data Sharing Using a Common Data Architecture shows you how by: Defining a common data architecture, its contents, and its uses Refining data to a common data architecture Discussing disparate data, its structure, quality, and how to identify it Describing how Data Sharing Reality is achieved Focusing on the importance of people and creating a win-win situation Providing a data lexicon and extensive glossary Data Sharing Using a Common Data Architecture is must reading for data administrators, database administrators, MIS project leaders, application programmers, systems analysts, MIS trainers and instructors, and graduate students.
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Privacy and data protection in police work and law enforcement cooperation has always been a challenging issue. Current developments in EU internal security policy, such as increased information sharing (which includes the exchange of personal data between European law enforcement agencies and judicial actors in the area of freedom, security and justice (Europol, Eurojust, Frontex and OLAF)) and the access of EU agencies, in particular Europol and Eurojust, to data stored in European information systems such as the SIS (II), VIS, CIS or Eurodac raise interesting questions regarding the balance between the rights of individuals and security interests. This book deals with the complexity of the relations between these actors and offers for the first time a comprehensive overview of the structures for information exchange in the area of freedom, security and justice and their compliance with data protection rules in this field.
Research funders in the UK, USA and across Europe are implementing data management and sharing policies to maximize openness of data, transparency and accountability of the research they support. Written by experts from the UK Data Archive with over 20 years experience, this book gives post-graduate students, researchers and research support staff the data management skills required in today’s changing research environment. The book features guidance on: how to plan your research using a data management checklist how to format and organize data how to store and transfer data research ethics and privacy in data sharing and intellectual property rights data strategies for collaborative research how to publish and cite data how to make use of other people’s research data, illustrated with six real-life case studies of data use.
This report examines the opportunities of enhancing access to and sharing of data (EASD) in the context of the growing importance of artificial intelligence and the Internet of Things. It discusses how EASD can maximise the social and economic value of data re-use and how the related risks and challenges can be addressed. It highlights the trade-offs, complementarities and possible unintended consequences of policy action – and inaction. It also provides examples of EASD approaches and policy initiatives in OECD countries and partner economies.
Medical Data Sharing, Harmonization and Analytics serves as the basis for understanding the rapidly evolving field of medical data harmonization combined with the latest cloud infrastructures for storing the harmonized (shared) data. Chapters cover the latest research and applications on data sharing and protection in the medical domain, cohort integration through the recent advancements in data harmonization, cloud computing for storing and securing the patient data, and data analytics for effectively processing the harmonized data. - Examines the unmet needs in chronic diseases as a part of medical data sharing - Discusses ethical, legal and privacy issues as part of data protection - Combines data harmonization and big data analytics strategies in shared medical data, along with relevant case studies in chronic diseases
Pharmaceutical companies, academic researchers, and government agencies such as the Food and Drug Administration and the National Institutes of Health all possess large quantities of clinical research data. If these data were shared more widely within and across sectors, the resulting research advances derived from data pooling and analysis could improve public health, enhance patient safety, and spur drug development. Data sharing can also increase public trust in clinical trials and conclusions derived from them by lending transparency to the clinical research process. Much of this information, however, is never shared. Retention of clinical research data by investigators and within organizations may represent lost opportunities in biomedical research. Despite the potential benefits that could be accrued from pooling and analysis of shared data, barriers to data sharing faced by researchers in industry include concerns about data mining, erroneous secondary analyses of data, and unwarranted litigation, as well as a desire to protect confidential commercial information. Academic partners face significant cultural barriers to sharing data and participating in longer term collaborative efforts that stem from a desire to protect intellectual autonomy and a career advancement system built on priority of publication and citation requirements. Some barriers, like the need to protect patient privacy, pre- sent challenges for both sectors. Looking ahead, there are also a number of technical challenges to be faced in analyzing potentially large and heterogeneous datasets. This public workshop focused on strategies to facilitate sharing of clinical research data in order to advance scientific knowledge and public health. While the workshop focused on sharing of data from preplanned interventional studies of human subjects, models and projects involving sharing of other clinical data types were considered to the extent that they provided lessons learned and best practices. The workshop objectives were to examine the benefits of sharing of clinical research data from all sectors and among these sectors, including, for example: benefits to the research and development enterprise and benefits to the analysis of safety and efficacy. Sharing Clinical Research Data: Workshop Summary identifies barriers and challenges to sharing clinical research data, explores strategies to address these barriers and challenges, including identifying priority actions and "low-hanging fruit" opportunities, and discusses strategies for using these potentially large datasets to facilitate scientific and public health advances.
This book provides modern technical answers to the legal requirements of pseudonymisation as recommended by privacy legislation. It covers topics such as modern regulatory frameworks for sharing and linking sensitive information, concepts and algorithms for privacy-preserving record linkage and their computational aspects, practical considerations such as dealing with dirty and missing data, as well as privacy, risk, and performance assessment measures. Existing techniques for privacy-preserving record linkage are evaluated empirically and real-world application examples that scale to population sizes are described. The book also includes pointers to freely available software tools, benchmark data sets, and tools to generate synthetic data that can be used to test and evaluate linkage techniques. This book consists of fourteen chapters grouped into four parts, and two appendices. The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases. The appendices provide pointers and describe freely available, open-source software systems that allow the linkage of sensitive data, and provide further details about the evaluations presented. A companion Web site at https://dmm.anu.edu.au/lsdbook2020 provides additional material and Python programs used in the book. This book is mainly written for applied scientists, researchers, and advanced practitioners in governments, industry, and universities who are concerned with developing, implementing, and deploying systems and tools to share sensitive information in administrative, commercial, or medical databases. The Book describes how linkage methods work and how to evaluate their performance. It covers all the major concepts and methods and also discusses practical matters such as computational efficiency, which are critical if the methods are to be used in practice - and it does all this in a highly accessible way! David J. Hand, Imperial College, London.
On March 19, 2014, the National Academies of Sciences, Engineering, and Medicine held a workshop on the topic of the sharing of data from environmental health research. Experts in the field of environmental health agree that there are benefits to sharing research data, but questions remain regarding how to effectively make these data available. The sharing of data derived from human subjects-making them both transparent and accessible to others-raises a host of ethical, scientific, and process questions that are not always present in other areas of science, such as physics, geology, or chemistry. The workshop participants explored key concerns, principles, and obstacles to the responsible sharing of data used in support of environmental health research and policy making while focusing on protecting the privacy of human subjects and addressing the concerns of the research community. Principles and Obstacles for Sharing Data from Environmental Health Research summarizes the presentations and discussions from the workshop.