Download Free Data Science Measuring Uncertainties Book in PDF and EPUB Free Download. You can read online Data Science Measuring Uncertainties and write the review.

With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.
With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.
This book constitutes the proceedings of the 12th IFIP TC 8 International Conference, CISIM 2013, held in Cracow, Poland, in September 2013. The 44 papers presented in this volume were carefully reviewed and selected from over 60 submissions. They are organized in topical sections on biometric and biomedical applications; pattern recognition and image processing; various aspects of computer security, networking, algorithms, and industrial applications. The book also contains full papers of a keynote speech and the invited talk.
The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.
Great scientists master the math behind the science. Do you still delay mastering data analysis, keeping you from more accurate, rigorous, and higher certainty conclusions? Jack Merrin, Ph.D. Princeton University, is a physicist who has helped hundreds of students with math and physics, taught physics labs, and used error analysis through 25 years of research. You can surely learn the right statistical methods from Jack. Introduction to Error Analysis is more than a collection of ad-hoc statistical theory. It is an easy-to-read blueprint used by scientists for presenting correct results. Transform your experimental perspective to confidence. Learn reusable principles for each new scientific project. This book covers reporting measurements and uncertainties, propagation of error, combining results, curve fitting, essential statistical concepts, and much, much, more. You might love this book if: You are doing lab reports or actual research, and it's time to get serious about data analysis. You want to focus on the essential calculations, not on time-wasting theory. You want adaptable MATLAB code for each different calculation. Hey, no need to reinvent the wheel. You want to reach correct and unique results using the established convention. You want to know what is correct to spot bad scientific literature. Introduction to Error Analysis is the concise book you need to start building your successful scientific career. If you like easy-to-follow lessons, practical examples, insightful tips, and an author who actually cares about you getting it right, then you'll love Jack's book. Buy Introduction to Error Analysis to start refining your data analysis skills today!
This hands-on guide is primarily intended to be used in undergraduate laboratories in the physical sciences and engineering. It assumes no prior knowledge of statistics. It introduces the necessary concepts where needed, with key points illustrated with worked examples and graphic illustrations. In contrast to traditional mathematical treatments it uses a combination of spreadsheet and calculus-based approaches, suitable as a quick and easy on-the-spot reference. The emphasis throughout is on practical strategies to be adopted in the laboratory. Error analysis is introduced at a level accessible to school leavers, and carried through to research level. Error calculation and propagation is presented though a series of rules-of-thumb, look-up tables and approaches amenable to computer analysis. The general approach uses the chi-square statistic extensively. Particular attention is given to hypothesis testing and extraction of parameters and their uncertainties by fitting mathematical models to experimental data. Routines implemented by most contemporary data analysis packages are analysed and explained. The book finishes with a discussion of advanced fitting strategies and an introduction to Bayesian analysis.
Dealing with Uncertainties proposes and explains a new approach for the analysis of uncertainties. Firstly, it is shown that uncertainties are the consequence of modern science rather than of measurements. Secondly, it stresses the importance of the deductive approach to uncertainties. This perspective has the potential of dealing with the uncertainty of a single data point and of data of a set having differing weights. Both cases cannot be dealt with the inductive approach, which is usually taken. This innovative monograph also fully covers both uncorrelated and correlated uncertainties. The weakness of using statistical weights in regression analysis is discussed. Abundant examples are given for correlation in and between data sets and for the feedback of uncertainties on experiment design.
In this book, Grabe illustrates the breakdown of traditional error calculus in the face of modern measurement techniques. Revising Gauß` error calculus ab initio, he treats random and unknown systematic errors on an equal footing from the outset. Furthermore, Grabe also proposes what may be called well defined measuring conditions, a prerequisite for defining confidence intervals that are consistent with basic statistical concepts. The resulting measurement uncertainties are as robust and reliable as required by modern-day science, engineering and technology.
Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.
Measurement shapes scientific theories, characterises improvements in manufacturing processes and promotes efficient commerce. In concert with measurement is uncertainty, and students in science and engineering need to identify and quantify uncertainties in the measurements they make. This book introduces measurement and uncertainty to second and third year students of science and engineering. Its approach relies on the internationally recognised and recommended guidelines for calculating and expressing uncertainty (known by the acronym GUM). The statistics underpinning the methods are considered and worked examples and exercises are spread throughout the text. Detailed case studies based on typical undergraduate experiments are included to reinforce the principles described in the book. This guide is also useful to professionals in industry who are expected to know the contemporary methods in this increasingly important area. Additional online resources are available to support the book at www.cambridge.org/9780521605793.