Download Free Data Resource Quality Book in PDF and EPUB Free Download. You can read online Data Resource Quality and write the review.

“This is not the kind of book that you’ll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective.” from the foreword by Thomas C. Redman, Ph.D., “the Data Doc” Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout.
"Covering both data architecture and data management issues, the book describes the impact of poor data practices, demonstrates more effective approaches, and reveals implementation pointers for quick results."--Jacket.
Data Quality provides an exposé of research and practice in the data quality field for technically oriented readers. It is based on the research conducted at the MIT Total Data Quality Management (TDQM) program and work from other leading research institutions. This book is intended primarily for researchers, practitioners, educators and graduate students in the fields of Computer Science, Information Technology, and other interdisciplinary areas. It forms a theoretical foundation that is both rigorous and relevant for dealing with advanced issues related to data quality. Written with the goal to provide an overview of the cumulated research results from the MIT TDQM research perspective as it relates to database research, this book is an excellent introduction to Ph.D. who wish to further pursue their research in the data quality area. It is also an excellent theoretical introduction to IT professionals who wish to gain insight into theoretical results in the technically-oriented data quality area, and apply some of the key concepts to their practice.
The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.
Create a competitive advantage with data quality Data is rapidly becoming the powerhouse of industry, but low-quality data can actually put a company at a disadvantage. To be used effectively, data must accurately reflect the real-world scenario it represents, and it must be in a form that is usable and accessible. Quality data involves asking the right questions, targeting the correct parameters, and having an effective internal management, organization, and access system. It must be relevant, complete, and correct, while falling in line with pervasive regulatory oversight programs. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality takes a holistic approach to improving data quality, from collection to usage. Author Rajesh Jugulum is globally-recognized as a major voice in the data quality arena, with high-level backgrounds in international corporate finance. In the book, Jugulum provides a roadmap to data quality innovation, covering topics such as: The four-phase approach to data quality control Methodology that produces data sets for different aspects of a business Streamlined data quality assessment and issue resolution A structured, systematic, disciplined approach to effective data gathering The book also contains real-world case studies to illustrate how companies across a broad range of sectors have employed data quality systems, whether or not they succeeded, and what lessons were learned. High-quality data increases value throughout the information supply chain, and the benefits extend to the client, employee, and shareholder. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality provides the information and guidance necessary to formulate and activate an effective data quality plan today.
Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the "Data Quality Act" in the USA and the "European 2003/98" directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic.
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.
Provides an overview of fundamental issues underlying central aspects of data quality - data consistency, data deduplication, data accuracy, data currency, and information completeness. The book promotes a uniform logical framework for dealing with these issues, based on data quality rules.
All organizations today confront data quality problems, both systemic and structural. Neither ad hoc approaches nor fixes at the systems level--installing the latest software or developing an expensive data warehouse--solve the basic problem of bad data quality practices. Journey to Data Qualityoffers a roadmap that can be used by practitioners, executives, and students for planning and implementing a viable data and information quality management program. This practical guide, based on rigorous research and informed by real-world examples, describes the challenges of data management and provides the principles, strategies, tools, and techniques necessary to meet them. The authors, all leaders in the data quality field for many years, discuss how to make the economic case for data quality and the importance of getting an organization's leaders on board. They outline different approaches for assessing data, both subjectively (by users) and objectively (using sampling and other techniques). They describe real problems and solutions, including efforts to find the root causes of data quality problems at a healthcare organization and data quality initiatives taken by a large teaching hospital. They address setting company policy on data quality and, finally, they consider future challenges on the journey to data quality.