Download Free Data Mining And Knowledge Discovery For Process Monitoring And Control Book in PDF and EPUB Free Download. You can read online Data Mining And Knowledge Discovery For Process Monitoring And Control and write the review.

Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.
This book is a follow-up to the IChemE symposium on “Neural Networks and Other Learning Technologies”, held at Imperial College, UK, in May 1999. The interest shown by the participants, especially those from the industry, has been instrumental in producing the book. The papers have been written by contributors of the symposium and experts in this field from around the world. They present all the important aspects of neural network utilisation as well as show the versatility of neural networks in various aspects of process engineering problems — modelling, estimation, control, optimisation and industrial applications.
The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as OC enterprise dataOCO. The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making. Sample Chapter(s). Foreword (37 KB). Chapter 1: Enterprise Data Mining: A Review and Research Directions (655 KB). Contents: Enterprise Data Mining: A Review and Research Directions (T W Liao); Application and Comparison of Classification Techniques in Controlling Credit Risk (L Yu et al.); Predictive Classification with Imbalanced Enterprise Data (S Daskalaki et al.); Data Mining Applications of Process Platform Formation for High Variety Production (J Jiao & L Zhang); Multivariate Control Charts from a Data Mining Perspective (G C Porzio & G Ragozini); Maintenance Planning Using Enterprise Data Mining (L P Khoo et al.); Mining Images of Cell-Based Assays (P Perner); Support Vector Machines and Applications (T B Trafalis & O O Oladunni); A Survey of Manifold-Based Learning Methods (X Huo et al.); and other papers. Readership: Graduate students in engineering, computer science, and business schools; researchers and practioners of data mining with emphazis of enterprise data mining."
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Although there are many Bayesian statistical books that focus on biostatistics and economics, there are few that address the problems faced by engineers. Bayesian Process Monitoring, Control and Optimization resolves this need, showing you how to oversee, adjust, and optimize industrial processes. Bridging the gap between application and dev
Current database technology and computer hardware allow us to gather, store, access, and manipulate massive volumes of raw data in an efficient and inexpensive manner. In addition, the amount of data collected and warehoused in all industries is growing every year at a phenomenal rate. Nevertheless, our ability to discover critical, non-obvious nuggets of useful information in data that could influence or help in the decision making process, is still limited. Knowledge discovery (KDD) and Data Mining (DM) is a new, multidisciplinary field that focuses on the overall process of information discovery from large volumes of data. The field combines database concepts and theory, machine learning, pattern recognition, statistics, artificial intelligence, uncertainty management, and high-performance computing. To remain competitive, businesses must apply data mining techniques such as classification, prediction, and clustering using tools such as neural networks, fuzzy logic, and decision trees to facilitate making strategic decisions on a daily basis. Knowledge Discovery for Business Information Systems contains a collection of 16 high quality articles written by experts in the KDD and DM field from the following countries: Austria, Australia, Bulgaria, Canada, China (Hong Kong), Estonia, Denmark, Germany, Italy, Poland, Singapore and USA.
This book gathers extended versions of the best papers presented at the Global Joint Conference on Industrial Engineering and Its Application Areas (GJCIE), held in Nevsehir, Turkey, on June 21-22, 2018. They reports on industrial engineering methods and applications, with a special focus on the advantages and challenges posed by Big data in this field. The book covers a wide range of topics, including decision making, optimization, supply chain management and quality control.