Download Free Data Filtering And Modelling In Urban Traffic Networks Book in PDF and EPUB Free Download. You can read online Data Filtering And Modelling In Urban Traffic Networks and write the review.

The problems of urban traffic in the industrially developed countries have been at the top of the priority list for a long time. While making a critical contribution to the economic well being of those countries, transportation systems in general and highway traffic in particular, also have detrimental effects which are evident in excessive congestion, high rates of accidents and severe pollution problems. Scientists from different disciplines have played an important role in the development and refinement of the tools needed for the planning, analysis, and control of urban traffic networks. In the past several years, there were particularly rapid advances in two areas that affect urban traffic: 1. Modeling of traffic flows in urban networks and the prediction of the resulting equilibrium conditions; 2. Technology for communication with the driver and the ability to guide him, by providing him with useful, relevant and updated information, to his desired destination.
The book emphasizes the predictive models of Big Data, Genetic Algorithm, and IoT with a case study. The book illustrates the predictive models with integrated fuel consumption models for smart and safe traveling. The text is a coordinated amalgamation of research contributions and industrial applications in the field of Intelligent Transportation Systems. The advanced predictive models and research results were achieved with the case studies, deployed in real transportation environments. Features: Provides a smart traffic congestion avoidance system with an integrated fuel consumption model. Predicts traffic in short-term and regular. This is illustrated with a case study. Efficient Traffic light controller and deviation system in accordance with the traffic scenario. IoT based Intelligent Transport Systems in a Global perspective. Intelligent Traffic Light Control System and Ambulance Control System. Provides a predictive framework that can handle the traffic on abnormal days, such as weekends, festival holidays. Bunch of solutions and ideas for smart traffic development in smart cities. This book focuses on advanced predictive models along with offering an efficient solution for smart traffic management system. This book will give a brief idea of the available algorithms/techniques of big data, IoT, and genetic algorithm and guides in developing a solution for smart city applications. This book will be a complete framework for ITS domain with the advanced concepts of Big Data Analytics, Genetic Algorithm and IoT. This book is primarily aimed at IT professionals. Undergraduates, graduates and researchers in the area of computer science and information technology will also find this book useful.
NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
This book is a collection of selected papers from the 2011 International Conference on Communications, Electronics and Automation Engineering hold in Xi’an, China, August 23-25, 2012. It presents some of the latest research findings in a broad range of interdisciplinary fields related to communications, electronics and automation engineering. Specific emphasis is placed on the following topics: automation control, data mining and statistics, simulation and mathematical modeling, human factors and cognitive engineering, web technology, optimization and algorithm, and network communications. The prime objective of the book is to familiarize the readers with cutting edge developments in the research of electronics and automation engineering with a variety of applications. Hopefully, the book can help researchers to identify research trends in many areas, to learn the new methods and tools, and to spark innovative ideas.
This book introduces the concepts of mobility data and data-driven urban traffic monitoring. A typical framework of mobility data-based urban traffic monitoring is also presented, and it describes the processes of mobility data collection, data processing, traffic modelling, and some practical issues of applying the models for urban traffic monitoring. This book presents three novel mobility data-driven urban traffic monitoring approaches. First, to attack the challenge of mobility data sparsity, the authors propose a compressive sensing-based urban traffic monitoring approach. This solution mines the traffic correlation at the road network scale and exploits the compressive sensing theory to recover traffic conditions of the whole road network from sparse traffic samplings. Second, the authors have compared the traffic estimation performances between linear and nonlinear traffic correlation models and proposed a dynamical non-linear traffic correlation modelling-based urban traffic monitoring approach. To address the challenge of involved huge computation overheads, the approach adapts the traffic modelling and estimations tasks to Apache Spark, a popular parallel computing framework. Third, in addition to mobility data collected by the public transit systems, the authors present a crowdsensing-based urban traffic monitoring approach. The proposal exploits the lightweight mobility data collected from participatory bus riders to recover traffic statuses through careful data processing and analysis. Last but not the least, the book points out some future research directions, which can further improve the accuracy and efficiency of mobility data-driven urban traffic monitoring at large scale. This book targets researchers, computer scientists, and engineers, who are interested in the research areas of intelligent transportation systems (ITS), urban computing, big data analytic, and Internet of Things (IoT). Advanced level students studying these topics benefit from this book as well.
This book emphasizes the increasingly important role that Computational Intelligence (CI) methods are playing in solving a myriad of entangled Wireless Sensor Networks (WSN) related problems. The book serves as a guide for surveying several state-of-the-art WSN scenarios in which CI approaches have been employed. The reader finds in this book how CI has contributed to solve a wide range of challenging problems, ranging from balancing the cost and accuracy of heterogeneous sensor deployments to recovering from real-time sensor failures to detecting attacks launched by malicious sensor nodes and enacting CI-based security schemes. Network managers, industry experts, academicians and practitioners alike (mostly in computer engineering, computer science or applied mathematics) benefit from th e spectrum of successful applications reported in this book. Senior undergraduate or graduate students may discover in this book some problems well suited for their own research endeavors.
This book constitutes the proceedings of the 31st Australasian Joint Conference on Artificial Intelligence, AI 2018, held in Wellington, New Zealand, in December 2018. The 50 full and 26 short papers presented in this volume were carefully reviewed and selected from 125 submissions. The paper were organized in topical sections named: agents, games and robotics; AI applications and innovations; computer vision; constraints and search; evolutionary computation; knowledge representation and reasoning; machine learning and data mining; planning and scheduling; and text mining and NLP.
Today, citizens advocate greater environmental sustainability, better services and the improvement of urban quality by promoting safer mobility, especially for the most vulnerable road users. Addressing these issues, Town and Infrastructure Planning for Safety and Urban Quality contains papers presented at the XXIII International Conference “Living and Walking in Cities” (Brescia, Italy, 15-16 June 2017). The contributions discuss town planning issues, look at best practices and research findings across the broad spectrum of urban and transport planning, with particular attention to the safety of pedestrians in the city. The main topics of the book are: - Urban regeneration. A focus on walkability (vulnerable road users; boosting and planning soft mobility) - Road safety and urban planning - vulnerable road users: planning for safety (integrated land use and transport planning; methodological approaches and case studies; integrated tools for town and transport planning; shaping public spaces and walkability; transport solutions for tourism) - Innovative and traditional solutions for Italian cities - Extra-European approaches to town and infrastructure planning - Different perspectives in road safety: prevention, infrastructure, sharing - Advances in road safety Town and Infrastructure Planning for Safety and Urban Quality is a powerful plea for a multi-disciplinary and comprehensive approach to urban mobility and planning, and will be of interest to academics, consultants and practitioners interested in these areas.
This book constitutes the proceedings of the 18th International Conference on Web Information Systems and Applications, WISA 2021, held in Kaifeng, China, in September 2021. The 49 full papers and 18 short papers presented were carefully reviewed and selected from 206 submissions. The papers are grouped in topical sections on world wide web, query processing and algorithm, natural language processing, machine learning, data mining, data privacy and security.