Download Free Data Driven Methods For Near Infrared Spectroscopy Modeling Book in PDF and EPUB Free Download. You can read online Data Driven Methods For Near Infrared Spectroscopy Modeling and write the review.

Time consuming offline laboratory analysis and high cost hardware measurement techniques render difficulties in obtaining the important quality variables in real time application. Near-infrared (NIR) spectroscopy is widely used as a process analytical tool (PAT) in chemical processes, providing online estimation of the target properties which are often obtained by lab analysis. This thesis focuses on the model building, model structure (wavelength) selection and online model update for NIR applications. Time varying issue is solved by applying recursive adaptation methods and a novel recursive wavelength selection algorithm is proposed to adapt the model structure during online phase. The Just-in-time (JIT) modeling approach is adopted to model the nonlinear relationships between spectra and properties. A similarity criterion that utilizes input-output information is developed to search for most relevant samples from the database. Finally, the recursive algorithm and locally weighted algorithm are synthesized into the JIT framework in order to deal with both time varying and non-linearity issues of the process.
Rapid, inexpensive, and easy-to-deploy, near-infrared (NIR) spectroscopy can be used to analyze samples of virtually any composition, origin, and condition. The Handbook of Near Infrared Analysis, Fourth Edition, explores the factors necessary to perform accurate and time- and cost-effective analyses across a growing spectrum of disciplines. This updated and expanded edition incorporates the latest advances in instrumentation, computerization, chemometrics applied to NIR spectroscopy, and method development in NIR spectroscopy, and underscores current trends in sample preparation, calibration transfer, process control, data analysis, instrument performance testing, and commercial NIR instrumentation. This work offers readers an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience. Additional features include the following: Explains how to perform accurate as well as time- and cost-effective analyses. Reviews software-enabled chemometric methods and other trends in data analysis. Highlights novel applications in pharmaceuticals, polymers, plastics, petrochemicals, textiles, foods and beverages, baked products, agricultural products, biomedicine, nutraceuticals, and counterfeit detection. Underscores current trends in sample preparation, calibration transfer, process control, data analysis, and multiple aspects of commercial NIR instrumentation. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Fourth Edition, continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and detailed practical experience provided firsthand by more than 50 experts in the field.
In the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of the most rapidly advancing spectroscopic techniques. Mainly known as an analytical tool useful for sample characterization and content quantification, NIR spectroscopy is essential in various other fields, e.g. NIR imaging techniques in biophotonics, medical applications or used for characterization of food products. Its contribution in basic science and physical chemistry should be noted as well, e.g. in exploration of the nature of molecular vibrations or intermolecular interactions. One of the current development trends involves the miniaturization and simplification of instrumentation, creating prospects for the spread of NIR spectrometers at a consumer level in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical technique. A growing diversity in the related methods and applications has led to a dispersion of these contributions among disparate scientific communities. The aim of this Special Issue was to bring together the communities that may perceive NIR spectroscopy from different perspectives. It resulted in 30 contributions presenting the latest advances in the methodologies essential in near-infrared spectroscopy in a variety of applications.
The Wool Handbook: Morphology, Structure, Property and Applications explores the fundamental aspects of wool fibers as well as traditional and novel applications of wool in areas including polymer composites and technical textiles. Apart from textiles and garments, wool has long been used for various diversified applications due to its unique material properties. Wool is inherently fire resistant, antimicrobial, flexible and antibacterial, and as a natural material, it can be used to create environmentally sustainable products. This book explains basic and advanced topics related to wool fibers, from shearing to marketing, drawing on academic and industrial research from a range of subjects. Providing statistics, processing methods, and testing and characterization techniques for wool fiber, this book will help readers to use wool fibers to find new applications and solutions. Provides advanced testing methods to explore the material characteristics of wool Includes the latest industrial methods for physical and chemical processing of wool Presents case studies on how wool fibers have been made into successful bio-based composite and textile products
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy—not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
A smart city utilizes ICT technologies to improve the working effectiveness, share various data with the citizens, and enhance political assistance and societal wellbeing. The fundamental needs of a smart and sustainable city are utilizing smart technology for enhancing municipal activities, expanding monetary development, and improving citizens’ standards of living. The Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities discusses new mathematical models in smart and sustainable cities using big data, visualization tools in mathematical modeling, machine learning-based mathematical modeling, and more. It further delves into privacy and ethics in data analysis. Covering topics such as deep learning, optimization-based data science, and smart city automation, this premier reference source is an excellent resource for mathematicians, statisticians, computer scientists, civil engineers, government officials, students and educators of higher education, librarians, researchers, and academicians.
Fast, inexpensive, and easy-to-use, near-infrared (NIR) spectroscopy can be used to analyze small samples of virtually any composition. The Handbook of Near Infrared Analysis, Third Edition explains how to perform accurate as well as time- and cost-effective analyses across a growing spectrum of disciplines. Presenting nearly 50% new and revised material, this thoroughly updated edition incorporates the latest advances in instrumentation, computerization, calibration, and method development in NIR spectroscopy. The book underscores current trends in sample preparation, calibration transfer, process control, data analysis, and commercial NIR instrumentation. New chapters highlight novel applications including the analysis of agro-forestry products, polymers, blood, and control serum. They also cover NIR spectra, process analytical technologies (PAT), quantitative and qualitative analyses for nutraceuticals, NIR photography uses in medicine, and counterfeit detection methods for pharmaceuticals and currency. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Third Edition continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience provided firsthand by more than 60 experts in the field.
Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.
Imagine an analytical technique that uses no chemicals, gives accurate and precise results in minutes or even continuously, and is simple to install and safe to use. Near-infrared spectroscopy (NIRS) supplies this dream. This book covers all of the essential features for successful NIRS application in a practical and easily understandable format. The driving force behind compiling this book is to provide knowledge on all aspects of NIRS to potential users, and to users who would like to delve a little deeper into the technology. We have assembled the book, mainly to help in the application of near-infrared (NIR) instruments and technology in industry.