Download Free Data Driven Intelligent Business Sustainability Book in PDF and EPUB Free Download. You can read online Data Driven Intelligent Business Sustainability and write the review.

Data-driven decision making is crucial for ensuring the long-term sustainability of businesses and economic growth. While rapid technological advancements have enabled the collection and analysis of data on an unprecedented scale, businesses face challenges in adopting evidence-based decision making. Data-Driven Intelligent Business Sustainability is a comprehensive guide that examines the challenges and opportunities presented by data-driven decision making. It covers new technologies like blockchain, IoT, and AI, explores their potential for sustainable business success, and provides guidance on managing cybersecurity threats. The book also includes case studies and examples of successful implementations of data-driven decision making, making it a practical resource for those seeking to upskill or reskill in this field. Targeted at computer science and engineering professionals, researchers, and students, the book provides valuable insights into the role of data-driven decision making in business sustainability, helping businesses achieve long-term success.
The book combines theoretical foundations with practical insights, case studies, and actionable strategies, making it an invaluable resource for marketing professionals, business leaders, students, and entrepreneurs alike. By exploring cutting-edge technologies and emphasizing the alignment of data-driven tactics with broader business objectives, Shemshaki equips readers with the knowledge and tools necessary to thrive in the digital age. Whether you're looking to enhance your data analysis skills, drive business growth through intelligent marketing decisions, or gain a competitive edge in the marketplace, this book provides a roadmap for leveraging data to create more meaningful connections with your audience and achieve measurable business results.
In today's academic environment, the challenge of ensuring lasting commercial and economic success for organizations has become more daunting than ever before. The relentless surge in data-driven decision-making, based on innovative technologies such as blockchain, IoT, and AI, has created a digital frontier filled with complexity. Maintaining a healthy firm that can continually provide innovative products and services to the public while fueling economic growth has become a formidable puzzle. Moreover, this digital transformation has ushered in new risks, from pervasive cybersecurity threats to the ethical challenges surrounding artificial intelligence. In this evolving landscape, academic scholars face the pressing challenge of deciphering the path to long-term organizational prosperity in an era dominated by data. Data-Driven Decision Making for Long-Term Business Success serves as guidance and insights amidst this academic challenge. It is the definitive solution for scholars seeking to uncover the complexities of data-driven decision-making and its profound impact on organizational success. Each meticulously curated chapter delves into a specific facet of this transformative journey, from the implications of modern technologies and pricing optimization to the ethics underpinning data-driven strategies and the metaverse's influence on decision-making.
"As digital technology is taking the world in a revolutionary way and business related aspects are getting smarter this book is a potential research source on the Artificial Intelligence-based Business Applications and Intelligence"--
Future Challenges in Sustainable Development within the Built Environment stimulates and reinterprets the demands of Responsible and Sustainable Development in the Built Environment for future action and development. It examines the methods of evaluation, the use of technology, the creation of new models and the role of human factors for examining and developing the subject over the next twenty years.
In the field of modern marketing, a pivotal challenge emerges as traditional strategies grapple with the complexities of an increasingly data-centric world. Marketers, researchers, and business consultants find themselves at a crossroads, navigating the intricate intersection of data science and strategic marketing practices. This challenge serves as the catalyst for Data-Driven Marketing for Strategic Success, a guide designed to address the pressing issues faced by academic scholars and professionals alike. This comprehensive exploration unveils the transformative power of data in reshaping marketing strategies, offering a beacon of strategic success in a sea of uncertainty. This book transcends the realm of traditional marketing literature. It stands as a useful resource, not merely adding elements to ongoing research but shaping the very future of how researchers, practitioners, and students engage with the dynamic world of data-driven marketing. It is strategically tailored to reach a diverse audience, offering valuable insights to academics and researchers exploring advanced topics, practitioners in the marketing industry seeking practical applications, and graduate students studying data science, marketing, and business analytics. Policymakers, ethicists, and industry regulators will find the dedicated section on ethical considerations particularly relevant, emphasizing the importance of responsible practices in the data-driven marketing landscape.
The two-volume set IFIP AICT 535 and 536 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2018, held in Seoul, South Korea, in August 2018. The 129 revised full papers presented were carefully reviewed and selected from 149 submissions. They are organized in the following topical sections: lean and green manufacturing; operations management in engineer-to-order manufacturing; product-service systems, customer-driven innovation and value co-creation; collaborative networks; smart production for mass customization; global supply chain management; knowledge based production planning and control; knowledge based engineering; intelligent diagnostics and maintenance solutions for smart manufacturing; service engineering based on smart manufacturing capabilities; smart city interoperability and cross-platform implementation; manufacturing performance management in smart factories; industry 4.0 - digital twin; industry 4.0 - smart factory; and industry 4.0 - collaborative cyber-physical production and human systems.
The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire device’s learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems’ optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.
The ever-expanding realm of Big Data poses a formidable challenge for academic scholars and professionals due to the sheer magnitude and diversity of data types, along with the continuous influx of information from various sources. Extracting valuable insights from this vast and complex dataset is crucial for organizations to uncover market intelligence and make informed decisions. However, without the proper guidance and understanding of Big Data analytics techniques and methodologies, scholars may struggle to navigate this landscape and maximize the potential benefits of their research. In response to this pressing need, Professor Dina Darwish presents Big Data Analytics Techniques for Market Intelligence, a groundbreaking book that addresses the specific challenges faced by scholars and professionals in the field. Through a comprehensive exploration of various techniques and methodologies, this book offers a solution to the hurdles encountered in extracting meaningful information from Big Data. Covering the entire lifecycle of Big Data analytics, including preprocessing, analysis, visualization, and utilization of results, the book equips readers with the knowledge and tools necessary to unlock the power of Big Data and generate valuable market intelligence. With real-world case studies and a focus on practical guidance, scholars and professionals can effectively leverage Big Data analytics to drive strategic decision-making and stay at the forefront of this rapidly evolving field.
Organizations are facing an array of complex challenges that demand innovative solutions. From managing a diverse workforce and harnessing the power of data analytics to adapting to remote work and the pressing need for emotionally intelligent leaders, the demands on modern businesses are constantly evolving and increasing. Staying ahead of these challenges is not only essential for survival but also for thriving in an ever-changing environment. Leveraging AI and Emotional Intelligence in Contemporary Business Organizations is a compass that guides academic scholars, students, and practitioners through the turbulent seas of modern business management. It dissects the problems and offers clear, well-researched solutions. With a team of respected researchers, academicians, and professionals at the helm, this book is a beacon of knowledge, illuminating the path to success in today's business landscape.