Download Free Data Driven Decision Making For Business Book in PDF and EPUB Free Download. You can read online Data Driven Decision Making For Business and write the review.

Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the "Data Doc," shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.
A hands-on guide to the use of quantitative methods and software for making successful business decisions The appropriate use of quantitative methods lies at the core of successful decisions made by managers, researchers, and students in the field of business. Providing a framework for the development of sound judgment and the ability to utilize quantitative and qualitative approaches, Data Driven Business Decisions introduces readers to the important role that data plays in understanding business outcomes, addressing four general areas that managers need to know about: data handling and Microsoft Excel, uncertainty, the relationship between inputs and outputs, and complex decisions with trade-offs and uncertainty. Grounded in the author's own classroom approach to business statistics, the book reveals how to use data to understand the drivers of business outcomes, which in turn allows for data-driven business decisions. A basic, non-mathematical foundation in statistics is provided, outlining for readers the tools needed to link data with business decisions; account for uncertainty in the actions of others and in patterns revealed by data; handle data in Excel; translate their analysis into simple business terms; and present results in simple tables and charts. The author discusses key data analytic frameworks, such as decision trees and multiple regression, and also explores additional topics, including: Use of the Excel® functions Solver and Goal Seek Partial correlation and auto-correlation Interactions and proportional variation in regression models Seasonal adjustment and what it reveals Basic portfolio theory as an introduction to correlations Chapters are introduced with case studies that integrate simple ideas into the larger business context, and are followed by further details, raw data, and motivating insights. Algebraic notation is used only when necessary, and throughout the book, the author utilizes real-world examples from diverse areas such as market surveys, finance, economics, and business ethics. Excel® add-ins StatproGo and TreePlan are showcased to demonstrate execution of the techniques, and a related website features extensive programming instructions as well as insights, data sets, and solutions to problems included in the material. Data Driven Business Decisions is an excellent book for MBA quantitative analysis courses or undergraduate general statistics courses. It also serves as a valuable reference for practicing MBAs and practitioners in the fields of statistics, business, and finance.
This workbook will serve as your guide to incorporating the data-driven decision making process into your organization’s culture and behavior. O’Neal leads you through setting up teams; warehousing, accessing, and examining data; and finally reflecting on your process. Understand what’s happening in your school environment and how you can make better decisions that will keep you on a path to success.
"Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management."--Publisher's description.
This book will help you understand how to integrate data-based decisions into the daily work of the school. It is a practical and relevant handbook for converting data into wise decision-making and planning. It will give you the skills to successfully make data-based decisions, measure student learning and program effectiveness, evaluate student progress, use data to improve instruction, integrate a "Dynamic Planning" process into the daily operation of your school.
How tech companies like Google, Airbnb, StubHub, and Facebook learn from experiments in our data-driven world—an excellent primer on experimental and behavioral economics Have you logged into Facebook recently? Searched for something on Google? Chosen a movie on Netflix? If so, you've probably been an unwitting participant in a variety of experiments—also known as randomized controlled trials—designed to test the impact of different online experiences. Once an esoteric tool for academic research, the randomized controlled trial has gone mainstream. No tech company worth its salt (or its share price) would dare make major changes to its platform without first running experiments to understand how they would influence user behavior. In this book, Michael Luca and Max Bazerman explain the importance of experiments for decision making in a data-driven world. Luca and Bazerman describe the central role experiments play in the tech sector, drawing lessons and best practices from the experiences of such companies as StubHub, Alibaba, and Uber. Successful experiments can save companies money—eBay, for example, discovered how to cut $50 million from its yearly advertising budget—or bring to light something previously ignored, as when Airbnb was forced to confront rampant discrimination by its hosts. Moving beyond tech, Luca and Bazerman consider experimenting for the social good—different ways that governments are using experiments to influence or “nudge” behavior ranging from voter apathy to school absenteeism. Experiments, they argue, are part of any leader's toolkit. With this book, readers can become part of “the experimental revolution.”
In a context where schools are held more and more accountable for the education they provide, data-based decision making has become increasingly important. This book brings together scholars from several countries to examine data-based decision making. Data-based decision making in this book refers to making decisions based on a broad range of evidence, such as scores on students’ assessments, classroom observations etc. This book supports policy-makers, people working with schools, researchers and school leaders and teachers in the use of data, by bringing together the current research conducted on data use across multiple countries into a single volume. Some of these studies are ‘best practice’ studies, where effective data use has led to improvements in student learning. Others provide insight into challenges in both policy and practice environments. Each of them draws on research and literature in the field.
Data is your most valuable leadership asset—here's how to use it The Data Driven Leader presents a clear, accessible guide to solving important leadership challenges through human resources-focused and other data analytics. This engaging book shows you how to transform the HR function and overall organizational effectiveness by using data to make decisions grounded in facts vs. opinions, identify root causes behind your company’s thorniest problems and move toward a winning, future-focused business strategy. Realistic and actionable, this book tells the story of a successful sales executive who, after leading an analytics-driven turnaround (in Data Driven, this book’s predecessor), faces a new turnaround challenge as chief human resources officer. Each chapter features insightful commentary and practical notes on the points the story raises, guiding you to put HR analytics into action in your organization. HR and other leaders cannot afford to overlook the power and competitive advantages of data-driven decision-making and strategies. This book reflects the growing trend of CEOs choosing analytics-minded business leaders to head HR, at a time when workplaces everywhere face game-changing forces including automation, robotics and artificial intelligence. It is urgent that human resources leaders embrace analytics, not only to remain professionally relevant but also to help their organizations successfully navigate this digital transformation. HR professionals can and must: Understand essential data science principles and corporate analytics models Identify and execute effective data analytics initiatives Boost HR and company productivity and performance with metrics that matter Shape an analytics-centric culture that generates data driven leaders Most organizations capture and report data, but data is useless without analysis that leads to action. The Data Driven Leader shows you how to use this tremendous asset to lead your organization higher.
Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes
A reliable, cost-effective approach to extracting priceless business information from all sources of text Excavating actionable business insights from data is a complex undertaking, and that complexity is magnified by an order of magnitude when the focus is on documents and other text information. This book takes a practical, hands-on approach to teaching you a reliable, cost-effective approach to mining the vast, untold riches buried within all forms of text using R. Author Ted Kwartler clearly describes all of the tools needed to perform text mining and shows you how to use them to identify practical business applications to get your creative text mining efforts started right away. With the help of numerous real-world examples and case studies from industries ranging from healthcare to entertainment to telecommunications, he demonstrates how to execute an array of text mining processes and functions, including sentiment scoring, topic modelling, predictive modelling, extracting clickbait from headlines, and more. You’ll learn how to: Identify actionable social media posts to improve customer service Use text mining in HR to identify candidate perceptions of an organisation, match job descriptions with resumes, and more Extract priceless information from virtually all digital and print sources, including the news media, social media sites, PDFs, and even JPEG and GIF image files Make text mining an integral component of marketing in order to identify brand evangelists, impact customer propensity modelling, and much more Most companies’ data mining efforts focus almost exclusively on numerical and categorical data, while text remains a largely untapped resource. Especially in a global marketplace where being first to identify and respond to customer needs and expectations imparts an unbeatable competitive advantage, text represents a source of immense potential value. Unfortunately, there is no reliable, cost-effective technology for extracting analytical insights from the huge and ever-growing volume of text available online and other digital sources, as well as from paper documents—until now.