Download Free Data Driven Bandwidth Choice For Density Estimation Based On Dependent Data Book in PDF and EPUB Free Download. You can read online Data Driven Bandwidth Choice For Density Estimation Based On Dependent Data and write the review.

The bandwidth selection problem in kernel density estimation is investigated in situations where the observed data are dependent. The classical leave-out technique is extended, and thereby a class of cross-validated bandwidths is defined. These bandwidths are shown to be asymptotically optimal under a strong mixing condition. The leave-one out, or ordinary, form of cross-validation remains asymptotically optimal under the dependence model considered. However, a simulation study shows that when the data are strongly enough correlated, the ordinary version of cross-validation can be improved upon in finite-sized samples.
This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2.
Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.
Bandwidth selection plays an important role in kernel density estimation. Least-squares cross-validation and plug-in methods are commonly used as bandwidth selectors for the continuous data setting. The former is a data-driven approach and the latter requires a priori assumptions about the unknown distribution of the data. A benefit from the plug-in method is its relatively quick computation and hence it is often used for preliminary analysis. However, we find that much less is known about the plug-in method in the discrete data setting and this motivates us to propose a plug-in bandwidth selector. A related issue is undersmoothing in kernel density estimation. Least-squares cross-validation is a popular bandwidth selector, but in many applied situations, it tends to select a relatively small bandwidth, or undersmooths. The literature suggests several methods to solve this problem, but most of them are the modifications of extant error criterions for continuous variables. Here we discuss this problem in the discrete data setting and propose non-geometric discrete kernel functions as a possible solution. This issue also occurs in kernel regression estimation. Our proposed bandwidth selector and kernel functions perform well in simulated and real data.
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Heavy-tailed distributions are typical for phenomena in complex multi-component systems such as biometry, economics, ecological systems, sociology, web access statistics, internet traffic, biblio-metrics, finance and business. The analysis of such distributions requires special methods of estimation due to their specific features. These are not only the slow decay to zero of the tail, but also the violation of Cramer’s condition, possible non-existence of some moments, and sparse observations in the tail of the distribution. The book focuses on the methods of statistical analysis of heavy-tailed independent identically distributed random variables by empirical samples of moderate sizes. It provides a detailed survey of classical results and recent developments in the theory of nonparametric estimation of the probability density function, the tail index, the hazard rate and the renewal function. Both asymptotical results, for example convergence rates of the estimates, and results for the samples of moderate sizes supported by Monte-Carlo investigation, are considered. The text is illustrated by the application of the considered methodologies to real data of web traffic measurements.
This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.