Download Free Data And Mobility Book in PDF and EPUB Free Download. You can read online Data And Mobility and write the review.

Mobility of people and goods is essential in the global economy. The ability to track the routes and patterns associated with this mobility offers unprecedented opportunities for developing new, smarter applications in different domains. Much of the current research is devoted to developing concepts, models, and tools to comprehend mobility data and make it manageable for these applications. This book surveys the myriad facets of mobility data, from spatio-temporal data modeling, to data aggregation and warehousing, to data analysis, with a specific focus on monitoring people in motion (drivers, airplane passengers, crowds, and even animals in the wild). Written by a renowned group of worldwide experts, it presents a consistent framework that facilitates understanding of all these different facets, from basic definitions to state-of-the-art concepts and techniques, offering both researchers and professionals a thorough understanding of the applications and opportunities made possible by the development of mobility data.
Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling, Second Edition provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns-a key aspect of transportation modeling. It features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. The fields covered by this book are evolving rapidly and this new edition updates the existing material and provides new chapters that reflect recent developments in the field (such as the emergence of active, transfer and reinforcement learning). Users will find a detailed, mobility ‘structural’ analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis that are related to complex processes and phenomena. It bridges the gap between big data, data science, and transportation systems analysis with a study of big data’s impact on mobility and an introduction to the tools necessary to apply new techniques.
Mobile communications and ubiquitous computing generate large volumes of data. Mining this data can produce useful knowledge, yet individual privacy is at risk. This book investigates the various scientific and technological issues of mobility data, open problems, and roadmap. The editors manage a research project called GeoPKDD, Geographic Privacy-Aware Knowledge Discovery and Delivery, and this book relates their findings in 13 chapters covering all related subjects.
This book introduces the concepts of mobility data and data-driven urban traffic monitoring. A typical framework of mobility data-based urban traffic monitoring is also presented, and it describes the processes of mobility data collection, data processing, traffic modelling, and some practical issues of applying the models for urban traffic monitoring. This book presents three novel mobility data-driven urban traffic monitoring approaches. First, to attack the challenge of mobility data sparsity, the authors propose a compressive sensing-based urban traffic monitoring approach. This solution mines the traffic correlation at the road network scale and exploits the compressive sensing theory to recover traffic conditions of the whole road network from sparse traffic samplings. Second, the authors have compared the traffic estimation performances between linear and nonlinear traffic correlation models and proposed a dynamical non-linear traffic correlation modelling-based urban traffic monitoring approach. To address the challenge of involved huge computation overheads, the approach adapts the traffic modelling and estimations tasks to Apache Spark, a popular parallel computing framework. Third, in addition to mobility data collected by the public transit systems, the authors present a crowdsensing-based urban traffic monitoring approach. The proposal exploits the lightweight mobility data collected from participatory bus riders to recover traffic statuses through careful data processing and analysis. Last but not the least, the book points out some future research directions, which can further improve the accuracy and efficiency of mobility data-driven urban traffic monitoring at large scale. This book targets researchers, computer scientists, and engineers, who are interested in the research areas of intelligent transportation systems (ITS), urban computing, big data analytic, and Internet of Things (IoT). Advanced level students studying these topics benefit from this book as well.
This book aims at showing how big data sources and data analytics can play an important role in sustainable mobility. It is especially intended to provide academicians, researchers, practitioners and decision makers with a snapshot of methods that can be effectively used to improve urban mobility. The different chapters, which report on contributions presented at the 4th Conference on Sustainable Urban Mobility, held on May 24-25, 2018, in Skiathos Island, Greece, cover different thematic areas, such as social networks and traveler behavior, applications of big data technologies in transportation and analytics, transport infrastructure and traffic management, transportation modeling, vehicle emissions and environmental impacts, public transport and demand responsive systems, intermodal interchanges, smart city logistics systems, data security and associated legal aspects. They show in particular how to apply big data in improving urban mobility, discuss important challenges in developing and implementing analytics methods and provide the reader with an up-to-date review of the most representative research on data management techniques for enabling sustainable urban mobility
This book provides detailed descriptions of big data solutions for activity detection and forecasting of very large numbers of moving entities spread across large geographical areas. It presents state-of-the-art methods for processing, managing, detecting and predicting trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating and noisy data streams from moving entities, correlating them with data from archived data sources expressing e.g. entities’ characteristics, geographical information, mobility patterns, mobility regulations and intentional data. The book is divided into six parts: Part I discusses the motivation and background of mobility forecasting supported by trajectory-oriented analytics, and includes specific problems and challenges in the aviation (air-traffic management) and the maritime domains. Part II focuses on big data quality assessment and processing, and presents novel technologies suitable for mobility analytics components. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Part IV focuses on mobility analytics methods exploiting (online) processed, synopsized and enriched data streams as well as (offline) integrated, archived mobility data, and highlights future location and trajectory prediction methods, distinguishing between short-term and more challenging long-term predictions. Part V examines how methods addressing data management, data processing and mobility analytics are integrated in big data architectures with distinctive characteristics compared to other known big data paradigmatic architectures. Lastly, Part VI covers important ethical issues that research on mobility analytics should address. Providing novel approaches and methodologies related to mobility detection and forecasting needs based on big data exploration, processing, storage, and analysis, this book will appeal to computer scientists and stakeholders in various application domains.
Because efficient compilation of information allows managers and business leaders to make the best decisions for the financial solvency of their organizations, data analysis is an important part of modern business administration. Understanding the use of analytics, reporting, and data mining in everyday business environments is imperative to the success of modern businesses. Utilizing Big Data Paradigms for Business Intelligence is a pivotal reference source that provides vital research on how to address the challenges of data extraction in business intelligence using the five “Vs” of big data: velocity, volume, value, variety, and veracity. This book is ideally designed for business analysts, investors, corporate managers, entrepreneurs, and researchers in the fields of computer science, data science, and business intelligence.
Transportation Transformation is an indispensable GPS for every automaker, transportation startup, investor, policymaker, or regulator who is planning the future of urban and suburban transit, and anyone else with a need to understand the changing ways in which consumers and goods will get around. When an industry this large changes this rapidly, strategy becomes complex and challenging. Transportation Transformation provides the crucial vision necessary to navigate those changes with confidence. Comprehensive, global, and meticulously researched, Transportation Transformation presents a vision of next-generation urban mobility arising from the interplay among three major groups: the automakers, the mobility services companies, and the cities. Transportation's future is subject to consumer shifts, driven by disruptive technology and business model innovations including autonomous or automated, connected, and electrified vehicles; on-demand mobility services, such as ride-hailing and micromobility; and rapidly multiplying new ways to deliver consumer transportation and goods. The book describes the transformations that automakers, mobility services companies, and cities must undertake, the new value chains that will form as a result of these transformations, and the business models that will enable the transformed organizations to monetize or otherwise benefit from next-generation mobility. Transportation Transformation details the central role of data, AI and other data-driven technologies in next-generation mobility and explains the key risks we must address in the process of transforming transportation. Even as traditional models of vehicle acquisition and ownership weaken, new business models are emerging, including subscription-, merchandising-, and advertising-based revenue streams. Such innovations will remake the staid and traditional value chains that dominate today's transportation markets and create new ones. Transportation Transformation discusses these new models under a variety of implementation scenarios involving automakers, Tier 1 suppliers, mobility services companies, and Internet technology providers. It analyzes the resulting new revenue streams and the value chains that will remake the economics of the automobile industry as well as the broader transportation and goods delivery industries. And it discusses in revealing detail the opportunities and risks ushered in by these shifts and disruptions.
Autonomous Vehicles and Future Mobility presents novel methods for examining the long-term effects on individuals, society, and on the environment for a wide range of forthcoming transport scenarios, such as self-driving vehicles, workplace mobility plans, demand responsive transport analysis, mobility as a service, multi-source transport data provision, and door-to-door mobility. With the development and realization of new mobility options comes change in long-term travel behavior and transport policy. This book addresses these impacts, considering such key areas as the attitude of users towards new services, the consequences of introducing new mobility forms, the impacts of changing work related trips, and more. By examining and contextualizing innovative transport solutions in this rapidly evolving field, the book provides insights into the current implementation of these potentially sustainable solutions. It will serve as a resource of general guidelines and best practices for researchers, professionals and policymakers.
After the start of the Syrian Civil War in 2011–12, increasing numbers of civilians sought refuge in neighboring countries. By May 2017, Turkey had received over 3 million refugees — the largest refugee population in the world. Some lived in government-run camps near the Syrian border, but many have moved to cities looking for work and better living conditions. They faced problems of integration, income, welfare, employment, health, education, language, social tension, and discrimination. In order to develop sound policies to solve these interlinked problems, a good understanding of refugee dynamics isnecessary. This book summarizes the most important findings of the Data for Refugees (D4R) Challenge, which was a non-profit project initiated to improve the conditions of the Syrian refugees in Turkey by providing a database for the scientific community to enable research on urgent problems concerning refugees. The database, based on anonymized mobile call detail records (CDRs) of phone calls and SMS messages of one million Turk Telekom customers, indicates the broad activity and mobility patterns of refugees and citizens in Turkey for the year 1 January to 31 December 2017. Over 100 teams from around the globe applied to take part in the challenge, and 61 teams were granted access to the data. This book describes the challenge, and presents selected and revised project reports on the five major themes: unemployment, health, education, social integration, and safety, respectively. These are complemented by additional invited chapters describing related projects from international governmental organizations, technological infrastructure, as well as ethical aspects. The last chapter includes policy recommendations, based on the lessons learned. The book will serve as a guideline for creating innovative data-centered collaborations between industry, academia, government, and non-profit humanitarian agencies to deal with complex problems in refugee scenarios. It illustrates the possibilities of big data analytics in coping with refugee crises and humanitarian responses, by showcasing innovative approaches drawing on multiple data sources, information visualization, pattern analysis, and statistical analysis.It will also provide researchers and students working with mobility data with an excellent coverage across data science, economics, sociology, urban computing, education, migration studies, and more.