Download Free Data Analytics For Cybersecurity Book in PDF and EPUB Free Download. You can read online Data Analytics For Cybersecurity and write the review.

Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
Cybersecurity Analytics is for the cybersecurity student and professional who wants to learn data science techniques critical for tackling cybersecurity challenges, and for the data science student and professional who wants to learn about cybersecurity adaptations. Trying to build a malware detector, a phishing email detector, or just interested in finding patterns in your datasets? This book can let you do it on your own. Numerous examples and datasets links are included so that the reader can "learn by doing." Anyone with a basic college-level calculus course and some probability knowledge can easily understand most of the material. The book includes chapters containing: unsupervised learning, semi-supervised learning, supervised learning, text mining, natural language processing, and more. It also includes background on security, statistics, and linear algebra. The website for the book contains a listing of datasets, updates, and other resources for serious practitioners.
This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.
Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.
Big Data Analytics in Cyber-Physical Systems: Machine Learning for the Internet of Things examines sensor signal processing, IoT gateways, optimization and decision-making, intelligent mobility, and implementation of machine learning algorithms in embedded systems. This book focuses on the interaction between IoT technology and the mathematical tools used to evaluate the extracted data of those systems. Each chapter provides the reader with a broad list of data analytics and machine learning methods for multiple IoT applications. Additionally, this volume addresses the educational transfer needed to incorporate these technologies into our society by examining new platforms for IoT in schools, new courses and concepts for universities and adult education on IoT and data science. - Bridges the gap between IoT, CPS, and mathematical modelling - Features numerous use cases that discuss how concepts are applied in different domains and applications - Provides "best practices", "winning stories" and "real-world examples" to complement innovation - Includes highlights of mathematical foundations of signal processing and machine learning in CPS and IoT
There is increasing pressure to protect computer networks against unauthorized intrusion, and some work in this area is concerned with engineering systems that are robust to attack. However, no system can be made invulnerable. Data Analysis for Network Cyber-Security focuses on monitoring and analyzing network traffic data, with the intention of preventing, or quickly identifying, malicious activity.Such work involves the intersection of statistics, data mining and computer science. Fundamentally, network traffic is relational, embodying a link between devices. As such, graph analysis approaches are a natural candidate. However, such methods do not scale well to the demands of real problems, and the critical aspect of the timing of communications events is not accounted for in these approaches.This book gathers papers from leading researchers to provide both background to the problems and a description of cutting-edge methodology. The contributors are from diverse institutions and areas of expertise and were brought together at a workshop held at the University of Bristol in March 2013 to address the issues of network cyber security. The workshop was supported by the Heilbronn Institute for Mathematical Research.
This book highlights several gaps that have not been addressed in existing cyber security research. It first discusses the recent attack prediction techniques that utilize one or more aspects of information to create attack prediction models. The second part is dedicated to new trends on information fusion and their applicability to cyber security; in particular, graph data analytics for cyber security, unwanted traffic detection and control based on trust management software defined networks, security in wireless sensor networks & their applications, and emerging trends in security system design using the concept of social behavioral biometric. The book guides the design of new commercialized tools that can be introduced to improve the accuracy of existing attack prediction models. Furthermore, the book advances the use of Knowledge-based Intrusion Detection Systems (IDS) to complement existing IDS technologies. It is aimed towards cyber security researchers.
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Traditional intrusion detection and logfile analysis are no longer enough to protect today’s complex networks. In this practical guide, security researcher Michael Collins shows you several techniques and tools for collecting and analyzing network traffic datasets. You’ll understand how your network is used, and what actions are necessary to protect and improve it. Divided into three sections, this book examines the process of collecting and organizing data, various tools for analysis, and several different analytic scenarios and techniques. It’s ideal for network administrators and operational security analysts familiar with scripting. Explore network, host, and service sensors for capturing security data Store data traffic with relational databases, graph databases, Redis, and Hadoop Use SiLK, the R language, and other tools for analysis and visualization Detect unusual phenomena through Exploratory Data Analysis (EDA) Identify significant structures in networks with graph analysis Determine the traffic that’s crossing service ports in a network Examine traffic volume and behavior to spot DDoS and database raids Get a step-by-step process for network mapping and inventory