Download Free Dark Matter Constraints On Supersymmetric Extensions Of The Standard Model Book in PDF and EPUB Free Download. You can read online Dark Matter Constraints On Supersymmetric Extensions Of The Standard Model and write the review.

The Standard Model of particle physics has been strengthened by the recent discovery of the long-awaited Higgs boson. The standard cosmological model has met the challenge of the high precision observations in comology and astroparticle physics. However these two standard models face both several theoretical issues, such as the naturalness problem in the Higgs sector of the Standard Model, as well as observational issues, in particular the fact that an unknown kind of matter called Dark Matter accounts for the majority of the matter content in our Universe. Attempts to solve such problems have led to the development of New Physics models during the last decades. Supersymmetry is one such model which addresses the fine-tuning problem in the Higgs sector and provides viable Dark Matter candidates. Current high energy and high precision experiments give many new opportunities to probe the supersymmetric models. It is in this context that this thesis is written. Considering the Minimal Supersymmetric Standard Model (MSSM), the simplest supersymmetric extension of the Standard Model of particle physics, and its conventional Dark Matter candidate, the neutralino, it is shown that collider constraints could provide informations on the very early Universe at the inflation area. It is also demonstrated that the Indirect Detection of Dark Matter, despite several drawbacks, can be a powerful technique to probe supersymmetric Dark Matter models. Beyond the MSSM it is shown that unique characteristics of the Dark Matter candidate in the NMSSM could be probed at colliders. The study of a supersymmetric model with an extended gauge symmetry, the UMSSM, is also developed. The features of another Dark Matter candidate of this model, the Right-Handed sneutrino, are analysed. More general constraints such as those coming from low energy observables are finally considered in this model.
The compelling astrophysical evidence for dark matter on one hand and the experimental evidence for neutrino masses on the other, demands modifications beyond the Standard Model. Therefore, building new models by extending the symmetries and particle content of the Standard Model is being pursued to remedy these problems. In this thesis, various models along with their predictions are presented. First, a gauge SU(2)N extension of the Standard Model, under which all of the Standard Model particles are singlet is introduced. The inverse seesaw mechanism is implemented for neutrino mass, with the new gauge boson as a dark matter candidate. The second paper is a gauge B-L extension of the Standard Model which breaks down to Z3, and it includes a long-lived dark matter candidate. The next model assumes that leptons do not couple directly to Higgs, and one loop mass generation is considered with important consequences, including Higgs decay, muon anomalous magnetic moment, etc. We then look at a U(1) gauge extension of the supersymmetric Standard Model, which has no [mu] term, and the Higgs boson's mass supersymmetric constraint is relaxed. The next model is a gauge B-L extension of the Standard Model with radiative seesaw neutrino mass and multipartite dark matter. We then consider another gauge U(1) extension under which quarks and leptons of each family may transform differently, while flavor-changing interactions are suitably suppressed. The next paper has an unbroken gauge SU(2) symmetry, which becomes confining at keV scale. We discuss the cosmological constraints and the implications for future e +e- colliders. Finally, an alternative left-right model is proposed with an automatic residual Z 2 × Z3 symmetry, such that dark matter has two components, i.e., one Dirac fermion and one complex scalar.
This work was nominated as an outstanding PhD thesis by the LPSC, Université Grenoble Alpes, France. The LHC Run 1 was a milestone in particle physics, leading to the discovery of the Higgs boson, the last missing piece of the so-called "Standard Model" (SM), and to important constraints on new physics, which challenge popular theories like weak-scale supersymmetry. This thesis provides a detailed account of the legacy of the LHC Run 1 ≤¥regarding these aspects. First, the SM and the need for its extension are presented in a concise yet revealing way. Subsequently, the impact of the LHC Higgs results on scenarios of new physics is assessed in detail, including a careful discussion of the relevant uncertainties. Two approaches are considered: generic modifications of the Higgs couplings, possibly arising from extended Higgs sectors or higher-dimensional operators; and tests of specific new physics models. Lastly, the implications of the null results of the searches for new physics are discussed with a particular focus on supersymmetric dark matter candidates. Here as well, two approaches are presented: the "simplified models" approach, and recasting by event simulation. This thesis stands out for its educational approach, its clear language and the depth of the physics discussion. The methods and tools presented offer readers essential practical tools for future research.
The Standard Model (SM) of particle physics is remarkably successful and has survived two decades of precision tests at high energy particle accelerators. However, it is known to be incomplete, and there are reasons to believe that there is new physics at energy scales that will soon be probed in greater detail than ever before by the Large Hadron Collider (LHC), a proton-proton accelerator being built near Geneva. This thesis contains a diverse set of topics that may broadly be described as physics beyond the SM. In Chapter 2, implications of current experimental constraints are presented for the stop masses and mixing in the Minimal Supersymmetric Standard Model (MSSM), a well-motivated candidate for physics beyond the SM. It is found, for example, that lower bounds on the stop masses are as large as 1 TeV assuming no stop-mixing. Chapter 3 presents the regions in the MSSM with the minimal amount of fine-tuning of electroweak symmetry breaking. The minimal amount of tuning increases enormously for a Higgs mass beyond 120 GeV. Supersymmetry cannot be an exact symmetry, and one possibility is that our Universe is in a long-lived metastable state with broken supersymmetry. In Chapter 4, a generic model with this property is constructed in which all the relevant parameters, including the supersymmetry breaking scale, are generated dynamically. This model has several interesting model-building features including an explicitly and spontaneously broken R-symmetry, a singlet, a large global symmetry, naturalness, renormalizability, and a "pseudo-runaway'' direction. In Chapter 5, a simple extension of the SM with weakly interacting non-chiral dark matter particles is presented. Such particles can be detected at a future direct-detection experiment. There are a wide variety of possible discovery signatures for new physics at the LHC. A discovery signature with a large SM background that has not been well studied involves multi-jet events without leptons and/or missing energy. In Chapter 6, it is found that using innovative search strategies pair production of new coloured adjoint fermions producing a pure six-jet final state can be detected up to a mass of about 650-700 GeV with 10 fb-1 of integrated luminosity.
Supersymmetric extensions of the standard model may resolve the outstanding dark matter problem by producing viable dark matter candidates, including a stable weakly interacting particle called a neutralino. The next-to-minimal supersymmetric standard model (NMSSM) is first explored with a scan of the parameter space for neutralino-hadron scattering using an updated value for the strange quark sigma commutator. This is followed by an extensive exploration of the parameter space of the E6-inspired supersymmetric standard model (E6SSM). It is demonstrated that this model still provides neutralino dark matter candidates that may be detected in the near-future by upcoming experiments, despite tightening experimental constraints.
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contains a brief introduction to the Standard Model, supersymmetry and the Minimal Supersymmetric Standard Model. Then SUSY GUTs in four space-time dimensions are introduced and reviewed. In addition, the cosmological issues concerning SUSY GUTs are discussed. Then the requirements for embedding a 4D SUSY GUT into higher-dimensional theories including gravity (i.e. String Theory) are investigated. Accordingly, section two of the course is devoted to discussing the so-called Orbifold GUTs and how in turn they solve some of the technical problems of 4D SUSY GUTs. Orbifold GUTs introduce a new set of open issues, which are then resolved in the third section in which it is shown how to embed Orbifold GUTs into the E(8) x E(8) Heterotic String in 10 space-time dimensions.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.