Download Free Cyclic Nucleotides In The Nervous System Book in PDF and EPUB Free Download. You can read online Cyclic Nucleotides In The Nervous System and write the review.

The elucidation of the cellular and molecular bases underlying the inte grated function of the central nervous system, both in disease and in health, must ultimately come from the combined efforts of scientists from many disciplines, including biology, chemistry, histology, pathology, physiology, pharmacology, and psychology. Communication between scientists from these various disciplines-vital to the advancement of our understanding of the function of the nervous system-has become more and more difficult in recent years. Both increasing specialization and the incredible increases in publications pertinent to brain research in a wide spectrum of journals, in symposium volumes, in monographs, in abstracts, and in reviews contrib ute to the problems of cross-communication and even of communication within a scientific discipline. Research on the significance of cyclic nucleo tides to the function of nervous systems is particularly illustrative of the communication problem. Since the initial publications by Sutherland, Rall, and Butcher in the late fifties and early sixties on high levels of adenylate cyclase, phosphodiesterases, and cyclic AMP in brain, the ensuing litera ture of this field has expanded exponentially. At the present time, from five to ten publications relevant to cyclic nucleotides and the nervous system appear each week. Indeed, these are minimal numbers based mainly on examination of literature titles and key index words. Many articles concerned with some aspect of central function contain, buried within their text, experiments with or related to cyclic nucleotides.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
This e-book will review special features of the cerebral circulation and how they contribute to the physiology of the brain. It describes structural and functional properties of the cerebral circulation that are unique to the brain, an organ with high metabolic demands and the need for tight water and ion homeostasis. Autoregulation is pronounced in the brain, with myogenic, metabolic and neurogenic mechanisms contributing to maintain relatively constant blood flow during both increases and decreases in pressure. In addition, unlike peripheral organs where the majority of vascular resistance resides in small arteries and arterioles, large extracranial and intracranial arteries contribute significantly to vascular resistance in the brain. The prominent role of large arteries in cerebrovascular resistance helps maintain blood flow and protect downstream vessels during changes in perfusion pressure. The cerebral endothelium is also unique in that its barrier properties are in some way more like epithelium than endothelium in the periphery. The cerebral endothelium, known as the blood-brain barrier, has specialized tight junctions that do not allow ions to pass freely and has very low hydraulic conductivity and transcellular transport. This special configuration modifies Starling's forces in the brain microcirculation such that ions retained in the vascular lumen oppose water movement due to hydrostatic pressure. Tight water regulation is necessary in the brain because it has limited capacity for expansion within the skull. Increased intracranial pressure due to vasogenic edema can cause severe neurologic complications and death.
Considers the role of protein phosphorylation in neuron-specific phenomena. Comprehensively treats the enzymes and molecular biology of phosphorylation and dephosphorylation reactions, examines evidence for the obligatory role of these reactions in neuronal function, and extensively reviews the large number of phosphorylation pathways and their interactions. Original schematic diagrams illustrate principles of the biochemical basis of cell regulation.
Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.
This valuable resource provides a systematic account of the biochemistry of smooth muscle contraction. As a comprehensive guide to this rapidly growing area of research, it covers the structure and characteristic properties of contractile and regulatory proteins, with special emphasis on their predicted function in the live muscle. Also included in this book are intermediate filament proteins, and desmin and vimentin, whose function in smooth muscle is unknown; and several enzymes involved in the phosphorylation-dephosphorylation of contractile and other proteins.
"Mechanisms of Neuroinflammation" book explains how the neuronal cells become swollen at the moment of the blood-brain barrier disruption and how they lose their immunological isolation. A cascade of cytokines and immune cells from the bloodstream enters the nervous system, inflaming neurons and activating the glia. This produces a neuroinflammatory process that can generate different neurodegenerative diseases. Better understanding of mechanisms that are activated at the time when the damage to the brain occurs could lead to the development of suitable therapies that revert the neuronal inflammation and thus prevent further damage to the nervous system.