Download Free Cyclic Nucleotide Signaling And The Cardiovascular System Book in PDF and EPUB Free Download. You can read online Cyclic Nucleotide Signaling And The Cardiovascular System and write the review.

This book is a printed edition of the Special Issue "Cyclic Nucleotide Signaling and the Cardiovascular System" that was published in JCDD
The book comprehensively presents new findings in cardiovascular research related to signaling microdomains in health and disease. Important second messengers such as cAMP, cGMP, calcium and their role in microdomain signaling are discussed. The book offers and explains methodical approaches and technical ways how to successfully analyze microdomain signaling, also in the context of disease. It further provides scientific perspectives and strategies that are based on the concept of signaling within microdomains and that can revolutionize pharmacology and eventually lead to the effective treatment of cardiovascular diseases in future.This book is written for scientists in cardiovascular research, pharmacology, molecular and cellular biology as well as medical doctors in cardiology, angiology and nephrology.
Cyclic Nucleotide Signaling and the Cardiovascular System.
Since the last major compendium dedicated to cyclic nucleotide phosphodiesterases (PDEs) was published over 15 years ago, an enormous amount of progress has occurred in the field. There is great need for a centralized source for key information in this burgeoning and therapeutically important area of medical research. Cyclic Nucleotide Phosph
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Recent years have seen tremendous advances in our understanding of the molecular mechanism of platelet activation. All aspects of signal transduction in platelets from the identification of surface receptors, G proteins, phospholipases, protein kinases and phosphatases, intracellular receptors for inositol phosphates, the Ca2+ regulatory machinery, cytoskeletal constituents to the control mechanism employing cyclic nucleotides has seen an explosion of information regarding their importance and for each constituent in the family of molecules to which they belong. This information has been of interest to researchers across a wide spectrum of disciplines including biochemists, pharmacologists, cell biologists and clinicians. In April 1992 an International Symposium bearing the name of this volume was organised at the Thrombosis Research Institute to bring together scientists from across the world whose common interest was the study of platelet activation and its regulation. We were particularly encouraged by the positive response from our speakers and the participants, their detailed contributions and the very lively discussions that took place throughout the two days of the symposium. Almost every aspect of signal transduction in human platelets was represented. Of the invited speakers twelve were from Europe (including the U. K. ), eight from North America and one from Japan. This volume is a compilation of chapters submitted by the speakers and represents a concise but informative picture of the present knowledge of the mechanisms of platelet activation and control.
This authoritative book gathers together a broad range of ideas and topics that define the field. It provides clear, concise, and comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics. The Third Edition contains substantial new material. Most chapters have been thoroughly reworked. The book includes chapters on important topics such as sensory transduction, the physiology of protozoa and bacteria, the regulation of cell division, and programmed cell death. - Completely revised and updated - includes 8 new chapters on such topics as membrane structure, intracellular chloride regulation, transport, sensory receptors, pressure, and olfactory/taste receptors - Includes broad coverage of both animal and plant cells - Appendixes review basics of the propagation of action potentials, electricity, and cable properties - Authored by leading experts in the field - Clear, concise, comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics
The field of neurology is being transformed, from a therapeutically nihilistic discipline with few effective treatments, to a therapeutic specialty which offers new, effective treatments for disorders of the brain and spinal cord. This remarkable transformation has bridged neuroscience, molecular medicine, and clinical investigation, and represents a major triumph for biomedical research. This book, which contains chapters by more than 29 internationally recognized authorities who have made major contributions to neurotherapeutics, tells the stories of how new treatments for disabling disorders of the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, and migraine, were developed, and explores evolving themes and technologies that offer hope for even more effective treatments and ultimately cures for currently untreatable disorders of the brain and spinal cord. The first part of this book reviews the development of new therapies in neurology, from their inception in terms of basic science to their introduction into the clinical world. It also explores evolving themes and new technologies. This book will be of interest to everyone – clinicians and basic scientists alike – interested in diseases of the brain and spinal cord, and in the quest for new treatments for these disorders.* Presents the evolution of the field of neurology into a therapeutic discipline * Discusses lessons learned from past successes and applications to ongoing work* Explores the future of this field