Download Free Cyber Physical Systems Design And Application For Industry 40 Book in PDF and EPUB Free Download. You can read online Cyber Physical Systems Design And Application For Industry 40 and write the review.

This book consists of chapters dedicated to the questions of cyber-physical system design and its usage for the chemical industry and new material design. Also, the contribution of the book covers scientific research and their results for cyber-physical systems design and application in the energy domain and solutions regarding engineering education for cyber-physical systems design. The book offers unique content for researchers and practitioners who are looking for new knowledge and skills in the framework of Industry 4.0 solutions. The book also benefits researchers and practitioners in chemistry and new material design and manufacturing to understand how cyber-physical systems can be applied to increase efficiency and performance. The target audience of the book are practitioners, enterprises representatives, scientists, Ph.D. and master students who perform scientific research or applications of cyber-physical systems in the concept of Industry 4.0.
Cyber-physical systems (CPS) can be defined as systems in which physical objects are represented in the digital world and integrated with computation, storage, and communication capabilities and are connected to each other in a network. The goal in the use of the CPS is integrating the dynamics of the physical processes with those of the software and networking, providing abstractions and modelling, design, and analysis techniques for the integrated whole. The notion of CPS is linked to concepts of robotics and sensor networks with intelligent systems proper of computational intelligence leading the pathway. Recent advances in science and engineering improve the link between computational and physical elements by means of intelligent systems, increasing the adaptability, autonomy, efficiency, functionality, reliability, safety, and usability of cyber-physical systems. The potential of cyber-physical systems will spread to several directions, including but not limited to intervention, precision manufacturing, operations in dangerous or inaccessible environments, coordination, efficiency, Maintenance 4.0, and augmentation of human capabilities. Design, Applications, and Maintenance of Cyber-Physical Systems gives insights about CPS as tools for integrating the dynamics of the physical processes with those of software and networking, providing abstractions and modelling, design, and analysis techniques for their smart manufacturing interoperation. The book will have an impact upon the research on robotics, mechatronics, integrated intelligent multibody systems, Industry 4.0, production systems management and maintenance, decision support systems, and Maintenance 4.0. The chapters discuss not only the technologies involved in CPS but also insights into how they are used in various industries. This book is ideal for engineers, practitioners, researchers, academicians, and students who are interested in a deeper understanding of cyber-physical systems (CPS), their design, application, and maintenance, with a special focus on modern technologies in Industry 4.0 and Maintenance 4.0.
This book introduces readers to cybersecurity and its impact on the realization of the Industry 4.0 vision. It covers the technological foundations of cybersecurity within the scope of the Industry 4.0 landscape and details the existing cybersecurity threats faced by Industry 4.0, as well as state-of-the-art solutions with regard to both academic research and practical implementations. Industry 4.0 and its associated technologies, such as the Industrial Internet of Things and cloud-based design and manufacturing systems are examined, along with their disruptive innovations. Further, the book analyzes how these phenomena capitalize on the economies of scale provided by the Internet. The book offers a valuable resource for practicing engineers and decision makers in industry, as well as researchers in the design and manufacturing communities and all those interested in Industry 4.0 and cybersecurity.
This book is open access under a CC BY 4.0 license. Technical Systems-of-Systems (SoS) – in the form of networked, independent constituent computing systems temporarily collaborating to achieve a well-defined objective – form the backbone of most of today’s infrastructure. The energy grid, most transportation systems, the global banking industry, the water-supply system, the military equipment, many embedded systems, and a great number more, strongly depend on systems-of-systems. The correct operation and continuous availability of these underlying systems-of-systems are fundamental for the functioning of our modern society. The 8 papers presented in this book document the main insights on Cyber-Physical System of Systems (CPSoSs) that were gained during the work in the FP7-610535 European Research Project AMADEOS (acronym for Architecture for Multi-criticality Agile Dependable Evolutionary Open System-of-Systems). It is the objective of this book to present, in a single consistent body, the foundational concepts and their relationships. These form a conceptual basis for the description and understanding of SoSs and go deeper in what we consider the characterizing and distinguishing elements of SoSs: time, emergence, evolution and dynamicity.
Cyber-Physical Systems: Foundations, Principles and Applications explores the core system science perspective needed to design and build complex cyber-physical systems. Using Systems Science's underlying theories, such as probability theory, decision theory, game theory, organizational sociology, behavioral economics, and cognitive psychology, the book addresses foundational issues central across CPS applications, including System Design -- How to design CPS to be safe, secure, and resilient in rapidly evolving environments, System Verification -- How to develop effective metrics and methods to verify and certify large and complex CPS, Real-time Control and Adaptation -- How to achieve real-time dynamic control and behavior adaptation in a diverse environments, such as clouds and in network-challenged spaces, Manufacturing -- How to harness communication, computation, and control for developing new products, reducing product concepts to realizable designs, and producing integrated software-hardware systems at a pace far exceeding today's timeline. The book is part of the Intelligent Data-Centric Systems: Sensor-Collected Intelligence series edited by Fatos Xhafa, Technical University of Catalonia. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Includes in-depth coverage of the latest models and theories that unify perspectives, expressing the interacting dynamics of the computational and physical components of a system in a dynamic environment - Focuses on new design, analysis, and verification tools that embody the scientific principles of CPS and incorporate measurement, dynamics, and control - Covers applications in numerous sectors, including agriculture, energy, transportation, building design and automation, healthcare, and manufacturing
An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.
The Fourth Industrial Revolution, also known as Industry 4.0, refers to the industrial paradigm bringing together the digital and physical worlds through the cyber-physical Systems, enhanced by the Internet of Things aimed to increase the effectiveness of human-machine cooperation (HMC). This book deals with issues related to the challenges of Industry 4.0 that are faced by enterprises and universities. Contrary to most publications on the subject, it covers both technological and business aspects of these challenges and shows how strong they are intertwined, bringing new value to readers. The book also presents new findings that will guide enterprises through Industry 4.0. This book offers readers an in-depth discussion of important areas of enterprises’ activities in the context of Industry 4.0. The first area concerns human resources management; in particular, what new employee competencies will be needed on the labor market, how to use modern concepts (e.g. design thinking), and how to manage multi-national teams of employees. The second area is related to marketing and covers issues regarding customized products. The third area is devoted to technical aspects such as autonomous vehicles, Internet of Things (IoT), radio-frequency identification (RFID) systems, and Bluetooth Low Energy (BLE) technology. The fourth area concerns IT systems, including systems that support work and business management, strategic information systems, and cyber-physical systems. Aimed at researchers, academics, practitioners, and students, it will be of value to those in the fields of human resource management, marketing, organizational studies, and management of technology and innovation.
This unique introduction to the foundational concepts of cyber-physical systems (CPS) describes key design principles and emerging research trends in detail. Several interdisciplinary applications are covered, with a focus on the wide-area management of infrastructures including electric power systems, air transportation networks, and health care systems. Design, control and optimization of cyber-physical infrastructures are discussed, addressing security and privacy issues of networked CPS, presenting graph-theoretic and numerical approaches to CPS evaluation and monitoring, and providing readers with the knowledge needed to operate CPS in a reliable, efficient, and secure manner. Exercises are included. This is an ideal resource for researchers and graduate students in electrical engineering and computer science, as well as for practitioners using cyber-physical systems in aerospace and automotive engineering, medical technology, and large-scale infrastructure operations.
Cyber-physical systems (CPS) are "engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components." CPS can be small and closed, such as an artificial pancreas, or very large, complex, and interconnected, such as a regional energy grid. CPS engineering focuses on managing inter- dependencies and impact of physical aspects on cyber aspects, and vice versa. With the development of low-cost sensing, powerful embedded system hardware, and widely deployed communication networks, the reliance on CPS for system functionality has dramatically increased. These technical developments in combination with the creation of a workforce skilled in engineering CPS will allow the deployment of increasingly capable, adaptable, and trustworthy systems. Engineers responsible for developing CPS but lacking the appropriate education or training may not fully understand at an appropriate depth, on the one hand, the technical issues associated with the CPS software and hardware or, on the other hand, techniques for physical system modeling, energy and power, actuation, signal processing, and control. In addition, these engineers may be designing and implementing life-critical systems without appropriate formal training in CPS methods needed for verification and to assure safety, reliability, and security. A workforce with the appropriate education, training, and skills will be better positioned to create and manage the next generation of CPS solutions. A 21st Century Cyber-Physical Systems Education examines the intellectual content of the emerging field of CPS and its implications for engineering and computer science education. This report is intended to inform those who might support efforts to develop curricula and materials; faculty and university administrators; industries with needs for CPS workers; and current and potential students about intellectual foundations, workforce requirements, employment opportunities, and curricular needs.
All over the world, vast research is in progress on the domain of Industry 4.0 and related techniques. Industry 4.0 is expected to have a very high impact on labor markets, global value chains, education, health, environment, and many social economic aspects. Industry 4.0 Interoperability, Analytics, Security, and Case Studies provides a deeper understanding of the drivers and enablers of Industry 4.0. It includes real case studies of various applications related to different fields, such as cyber physical systems (CPS), Internet of Things (IoT), cloud computing, machine learning, virtualization, decentralization, blockchain, fog computing, and many other related areas. Also discussed are interoperability, design, and implementation challenges. Researchers, academicians, and those working in industry around the globe will find this book of interest. FEATURES Provides an understanding of the drivers and enablers of Industry 4.0 Includes real case studies of various applications for different fields Discusses technologies such as cyber physical systems (CPS), Internet of Things (IoT), cloud computing, machine learning, virtualization, decentralization, blockchain, fog computing, and many other related areas Covers design, implementation challenges, and interoperability Offers detailed knowledge on Industry 4.0 and its underlying technologies, research challenges, solutions, and case studies