Download Free Cutting Brownian Paths Book in PDF and EPUB Free Download. You can read online Cutting Brownian Paths and write the review.

A long open problem in probability theory has been the following: Can the graph of planar Brownian motion be split by a straight line? In this volume, the authors provide a solution, discuss related works, and present a number of open problems.
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Since its first publication in 1965 in the series Grundlehren der mathematischen Wissenschaften this book has had a profound and enduring influence on research into the stochastic processes associated with diffusion phenomena. Generations of mathematicians have appreciated the clarity of the descriptions given of one- or more- dimensional diffusion processes and the mathematical insight provided into Brownian motion. Now, with its republication in the Classics in Mathematics it is hoped that a new generation will be able to enjoy the classic text of Itô and McKean.
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
All the papers in the volume are original research papers, discussing fundamental properties of stochastic processes. The topics under study (martingales, filtrations, path properties, etc.) represent an important part of the current research performed in 1996-97 by various groups of probabilists in France and abroad.
The authors define a class of random measures, spatially independent martingales, which we view as a natural generalization of the canonical random discrete set, and which includes as special cases many variants of fractal percolation and Poissonian cut-outs. The authors pair the random measures with deterministic families of parametrized measures , and show that under some natural checkable conditions, a.s. the mass of the intersections is Hölder continuous as a function of . This continuity phenomenon turns out to underpin a large amount of geometric information about these measures, allowing us to unify and substantially generalize a large number of existing results on the geometry of random Cantor sets and measures, as well as obtaining many new ones. Among other things, for large classes of random fractals they establish (a) very strong versions of the Marstrand-Mattila projection and slicing results, as well as dimension conservation, (b) slicing results with respect to algebraic curves and self-similar sets, (c) smoothness of convolutions of measures, including self-convolutions, and nonempty interior for sumsets, and (d) rapid Fourier decay. Among other applications, the authors obtain an answer to a question of I. Łaba in connection to the restriction problem for fractal measures.
Sufficient conditions are obtained for the continuity of renormalized self-intersection local times for the multiple intersections of a large class of strongly symmetric L vy processes in $R DEGREESm$, $m=1,2$. In $R DEGREES2$ these include Brownian motion and stable processes of index greater than 3/2, as well as many processes in their domains of attraction. In $R DEGREES1$ these include stable processes of index $3/4
This book is intended for graduate students and research mathematicians working in logic and foundations
This book is intended for graduate students and research mathematicians working in group theory and generalizations.
In the paper we study new dynamical zeta functions connected with Nielsen fixed point theory. The study of dynamical zeta functions is part of the theory of dynamical systems, but it is also intimately related to algebraic geometry, number theory, topology and statistical mechanics. The paper consists of four parts. Part I presents a brief account of the Nielsen fixed point theory. Part II deals with dynamical zeta functions connected with Nielsen fixed point theory. Part III is concerned with analog of Dold congruences for the Reidemeister and Nielsen numbers. In Part IV we explain how dynamical zeta functions give rise to the Reidemeister torsion, a very important topological invariant which has useful applications in knots theory,quantum field theory and dynamical systems.