Download Free Custom Power Devices For Power Quality Improvement Book in PDF and EPUB Free Download. You can read online Custom Power Devices For Power Quality Improvement and write the review.

Power Quality Enhancement Using Custom Power Devices considers the structure, control and performance of series compensating DVR, the shunt DSTATCOM and the shunt with series UPQC for power quality improvement in electricity distribution. Also addressed are other power electronic devices for improving power quality in Solid State Transfer Switches and Fault Current Limiters. Applications for these technologies as they relate to compensating busses supplied by a weak line and for distributed generation connections in rural networks, are included. In depth treatment of inverters to achieve voltage support, voltage balancing, harmonic suppression and transient suppression in realistic network environments are also covered. New material on the potential for shunt and series compensation which emphasizes the importance of control design has been introduced.
As the electrical industry continues to develop, one sector that still faces a range of concerns is the electrical distribution system. Excessive industrialization and inadequate billing are just a few issues that have plagued this electrical sector as it advances into the smart grid environment. Research is necessary to explore the possible solutions in fixing these problems and developing the distribution sector into an active and smart system. The Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks is a collection of innovative research on the methods and applications of solving major issues within the electrical distribution system. Some issues covered within the publication include distribution losses, improper monitoring of system, renewable energy integration with micro-grid and distributed energy sources, and smart home energy management system modelling. This book is ideally designed for power engineers, electrical engineers, energy professionals, developers, technologists, policymakers, researchers, academicians, industry professionals, and students seeking current research on improving this key sector of the electrical industry.
Custom Power Devices for Efficient Distributed Energy Systems presents a range of novel ideas and concepts based on renewable energy-fed power generation and control, offering avenues to efficient utilization and improved power quality, and addressing power quality issues such as harmonics compensation, supply current balancing, and neutral current compensation. The book begins by introducing distributed power systems within the global renewable energy context, reviewing different types of renewable energy sources and distributed power generation systems, and detailing custom power device design and modelling. This is followed by individual chapters providing in-depth coverage of specific techniques and applications, with insights into various topologies, as well as control algorithms, used for power control in a range of distributed energy conversion systems, such as solar, wind, hydro, and other power sources. Finally, power quality issues in renewable energy distributed generation are discussed and addressed in detail. This is a valuable resource of researchers, faculty, and advanced students with an interest in power generation systems, renewable energy, and power systems engineering, as well as practicing engineers, R&D professionals, managers, and other industry personnel in the renewable energy sector. - Covers established as well as advanced control algorithms for the operation of custom power devices - Extensively explains circuit design and its testing for solar and wind-based energy conversion systems - Includes simulation results and mathematical modeling of control algorithms - Presents applications of converter topologies in solar, wind, hydro, and other power generation systems
The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. - Provides theoretical and practical insight into power quality problems of electric machines and systems - 134 practical application (example) problems with solutions - 125 problems at the end of chapters dealing with practical applications - 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines
Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding of mitigation techniques for power quality problems. This timely book comprehensively identifies, classifies, analyses and quantifies all associated power quality problems, including the direct integration of renewable energy sources in the distribution system, and systematically delivers mitigation techniques to overcome these problems. Key features: • Emphasis on in-depth learning of the latest topics in power quality extensively illustrated with waveforms and phasor diagrams. • Essential theory supported by solved numerical examples, review questions, and unsolved numerical problems to reinforce understanding. • Companion website contains solutions to unsolved numerical problems, providing hands-on experience. Senior undergraduate and graduate electrical engineering students and instructors will find this an invaluable resource for education in the field of power quality. It will also support continuing professional development for practicing engineers in distribution and transmission system operators.
Second International Conference on Intelligent Computing and Applications was the annual research conference aimed to bring together researchers around the world to exchange research results and address open issues in all aspects of Intelligent Computing and Applications. The main objective of the second edition of the conference for the scientists, scholars, engineers and students from the academia and the industry is to present ongoing research activities and hence to foster research relations between the Universities and the Industry. The theme of the conference unified the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in computational intelligence and bridges theoretical research concepts with applications. The conference covered vital issues ranging from intelligent computing, soft computing, and communication to machine learning, industrial automation, process technology and robotics. This conference also provided variety of opportunities for the delegates to exchange ideas, applications and experiences, to establish research relations and to find global partners for future collaboration.
Power quality problems have increasingly become a substantial concern over the last decade, but surprisingly few analytical techniques have been developed to overcome these disturbances in system-equipment interactions. Now in this comprehensive book, power engineers and students can find the theoretical background necessary for understanding how to analyze, predict, and mitigate the two most severe power disturbances: voltage sags and interruptions. This is the first book to offer in-depth analysis of voltage sags and interruptions and to show how to apply mathematical techniques for practical solutions to these disturbances. From UNDERSTANDING AND SOLVING POWER QUALITY PROBLEMS you will gain important insights into Various types of power quality phenomena and power quality standards Current methods for power system reliability evaluation Origins of voltage sags and interruptions Essential analysis of voltage sags for characterization and prediction of equipment behavior and stochastic prediction Mitigation methods against voltage sags and interruptions Sponsored by: IEEE Power Electronics Society, IEEE Industry Applications Society, IEEE Power Engineering Society.
Within this book the fundamental concepts associated with the topic of power electronic control are covered alongside the latest equipment and devices, new application areas and associated computer-assisted methods. *A practical guide to the control of reactive power systems *Ideal for postgraduate and professional courses *Covers the latest equipment and computer-aided analysis.
Worldwide, the effects of global warming, pollution due to power generation from fossil fuels, and its depletion have led to the rapid deployment of renewable energy-based power generation. The leading renewable technologies are wind and photovoltaic (PV) systems. The incorporation of this generation of technologies has led to the development of a broad array of new methods and tools to integrate renewable generation into power system networks.The Handbook of Renewable Energy Technology & Systems comprises 22 chapters, arranged into four sections, which present a comprehensive analysis of various renewable energy-based distributed generation (DG) technologies. Aspects of renewable energy covered include wind and photovoltaic power systems and technology, micro-grids, power electronic applications, power quality, and the protection of renewable distributed generation.
Power quality is an important measure of fitness of electricity networks. With increasing renewable energy generations and usage of power electronics converters, it is important to investigate how these developments will have an impact to existing and future electricity networks. This book hence provides readers with an update of power quality issues in all sections of the network, namely, generation, transmission, distribution and end user, and discusses some practical solutions.