Download Free Curriculum Materials Book in PDF and EPUB Free Download. You can read online Curriculum Materials and write the review.

A Framework for K-12 Science Education and Next Generation Science Standards (NGSS) describe a new vision for science learning and teaching that is catalyzing improvements in science classrooms across the United States. Achieving this new vision will require time, resources, and ongoing commitment from state, district, and school leaders, as well as classroom teachers. Successful implementation of the NGSS will ensure that all K-12 students have high-quality opportunities to learn science. Guide to Implementing the Next Generation Science Standards provides guidance to district and school leaders and teachers charged with developing a plan and implementing the NGSS as they change their curriculum, instruction, professional learning, policies, and assessment to align with the new standards. For each of these elements, this report lays out recommendations for action around key issues and cautions about potential pitfalls. Coordinating changes in these aspects of the education system is challenging. As a foundation for that process, Guide to Implementing the Next Generation Science Standards identifies some overarching principles that should guide the planning and implementation process. The new standards present a vision of science and engineering learning designed to bring these subjects alive for all students, emphasizing the satisfaction of pursuing compelling questions and the joy of discovery and invention. Achieving this vision in all science classrooms will be a major undertaking and will require changes to many aspects of science education. Guide to Implementing the Next Generation Science Standards will be a valuable resource for states, districts, and schools charged with planning and implementing changes, to help them achieve the goal of teaching science for the 21st century.
The book presents comparative analyses of five elementary mathematics curriculum programs used in the U.S. from three different perspectives: the mathematical emphasis, the pedagogical approaches, and how authors communicate with teachers. These perspectives comprise a framework for examining what curriculum materials are comprised of, what is involved in reading and interpreting them, and how curriculum authors can and do support teachers in this process. Although the focus of the analysis is 5 programs used at a particular point in time, this framework extends beyond these specific programs and illuminates the complexity of curriculum materials and their role in teaching in general. Our analysis of the mathematical emphasis considers how the mathematics content is presented in each program, in terms of sequencing, the nature of mathematical tasks (cognitive demand and ongoing practice), and the way representations are used. Our analysis of the pedagogical approach examines explicit and implicit messages about how students should interact with mathematics, one another, the teacher, and the textbook around these mathematical ideas, as well as the role of the teacher. In order to examine how curriculum authors support teachers, we analyze how they communicate with teachers and what they communicate about, including the underlying mathematics, noticing student thinking, and rationale for design elements. The volume includes a chapter on curriculum design decisions based on interviews with curriculum authors.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
This book compiles and synthesizes existing research on teachers’ use of mathematics curriculum materials and the impact of curriculum materials on teaching and teachers, with a particular emphasis on – but not restricted to – those materials developed in the 1990s in response to the NCTM’s Principles and Standards for School Mathematics. Despite the substantial amount of curriculum development activity over the last 15 years and growing scholarly interest in their use, the book represents the first compilation of research on teachers and mathematics curriculum materials and the first volume with this focus in any content area in several decades.
The Creative Curriculum comes alive! This videotape-winner of the 1989 Silver Apple Award at the National Educational Film and Video Festival-demonstrates how teachers set the stage for learning by creating a dynamic well-organized environment. It shows children involved in seven of the interest areas in the The Creative Curriculum and explains how they learn in each area. Everyone conducts in-service training workshops for staff and parents or who teaches early childhood education courses will find the video an indispensable tool for explainin appropriate practice.
What kinds of curriculum materials do mathematics teachers select and use, and how? This question is complex, in a period of deep evolutions of teaching resources, with the proficiency of online resources in particular. How do teachers learn from these materials, and in which ways do they ‘tailor’ them for their use and pupil learning? Teachers collect resources, select, transform, share, implement, and revise them. Drawing from the French term « ingénierie documentaire »,we call these processes « documentation ». The literal English translation is « to work with documents », but the meaning it carries is richer. Documentation refers to the complex and interactive ways that teachers work with resources; in-class and out-of-class, individually, but also collectively.
From EL Education comes a proven approach to student assessment Leaders of Their Own Learning offers a new way of thinking about assessment based on the celebrated work of EL Education schools across the country. Student-Engaged Assessment is not a single practice but an approach to teaching and learning that equips and compels students to understand goals for their learning and growth, track their progress toward those goals, and take responsibility for reaching them. This requires a set of interrelated strategies and structures and a whole-school culture in which students are given the respect and responsibility to be meaningfully engaged in their own learning. Includes everything teachers and school leaders need to implement a successful Student-Engaged Assessment system in their schools Outlines the practices that will engage students in making academic progress, improve achievement, and involve families and communities in the life of the school Describes each of the book's eight key practices, gives advice on how to begin, and explains what teachers and school leaders need to put into practice in their own classrooms Ron Berger is Chief Program Officer for EL Education and a former public school teacher Leaders of Their Own Learning shows educators how to ignite the capacity of students to take responsibility for their own learning, meet Common Core and state standards, and reach higher levels of achievement. DVD and other supplementary materials are not included as part of the e-book file, but are available for download after purchase.
Curriculum Materials Collections and Centers: Legacies from the Past, Visions of the Future captures the evolution of the education collections and services integral to teacher preparation. Edited by Rita Kohrman, education resources librarian at Grand Valley State University, the book provides practical applications for curriculum material center (CMC) operations that focus on the fundamental needs of students, faculty, and current teachers.