Download Free Current Research In Protein Chemistry Book in PDF and EPUB Free Download. You can read online Current Research In Protein Chemistry and write the review.

Current Research in Protein Chemistry: Techniques, Structure, and Function focuses on the techniques and methods used for determining the structure and function of proteins. Topics covered range from protein folding and stability to catalysis by chimeric proteins, amino acid and peptide analysis, applications of mass spectrometry to peptide and protein analysis, and protein sequencing. This book is divided into six sections encompassing 55 chapters. The first chapter describes a novel method for protein hydrolysis by means of microwave irradiation that uses Teflon-Pyrex tubes. This is followed by a discussion of the application of high performance capillary electrophoresis to the analysis of amino acids. The sections that follow focus on mass spectrometric methods, protein sequencing, and capillary electrophoresis as well as protein stability, chimeric proteins and enzyme modifications, and protein structure prediction. The crystal structure of human interleukin-1alpha, the acid-denatured states of proteins, solubility of recombinant proteins expressed in Escherichia coli, and catalysis by chimeric proteins are considered. The reader is also introduced to peptide mapping and internal sequencing of proteins from acrylamide gels, new approaches to covalent sequence analysis, alkaline denaturation of hemoglobin, and measurements of disulfide bond stabilities in protein folding intermediates. Students and researchers interested in protein chemistry will find this book extremely helpful.
In recent years, interest in proteins has surged. This resurgence has been driven by the expansion of the post-genomic era when structural genomics and proteomics require new techniques in protein chemistry and new applications of older techniques. Protein chemistry methods are used by nearly every discipline of biomedical research. Many techniques
Targeting protein degradation using small molecules is one of the most exciting small-molecule therapeutic strategies in decades and a rapidly growing area of research. In particular, the development of proteolysis targeting chimera (PROTACs) as potential drugs capable of recruiting target proteins to the cellular quality control machinery for elimination has opened new avenues to address traditionally ‘difficult to target’ proteins. This book provides a comprehensive overview from the leading academic and industrial experts on recent developments, scope and limitations in this dynamically growing research area; an ideal reference work for researchers in drug discovery and chemical biology as well as advanced students.
Published continuously since 1944, the Advances in Protein Chemistry and Structural Biology serial has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. This volume features articles on Protein Aggregation. Covers reviews of methodology and research in all aspects of protein chemistry Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics
The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.
Protein Simulation focuses on predicting how protein will act in vivo. These studies use computer analysis, computer modeling, and statistical probability to predict protein function. * Force Fields* Ligand Binding* Protein Membrane Simulation* Enzyme Dynamics* Protein Folding and unfolding simulations
Proteins: Structure and Function is a comprehensive introduction to the study of proteins and their importance to modern biochemistry. Each chapter addresses the structure and function of proteins with a definitive theme designed to enhance student understanding. Opening with a brief historical overview of the subject the book moves on to discuss the ‘building blocks’ of proteins and their respective chemical and physical properties. Later chapters explore experimental and computational methods of comparing proteins, methods of protein purification and protein folding and stability. The latest developments in the field are included and key concepts introduced in a user-friendly way to ensure that students are able to grasp the essentials before moving on to more advanced study and analysis of proteins. An invaluable resource for students of Biochemistry, Molecular Biology, Medicine and Chemistry providing a modern approach to the subject of Proteins.
The second edition of Structure in Protein Chemistry showcases the latest developments and innovations in the field of protein structure analysis and prediction. The book begins by explaining how proteins are purified and describes methods for elucidating their sequences of amino acids and defining their posttranslational modifications. Comprehensive explanations of crystallography and of noncovalent forces-ionic interactions, hydrogen bonding, and the hydrophobic effect-act as a prelude to an exhaustive description of the atomic details of the structures of proteins. The resulting understanding of protein molecular structure forms the basis for discussions of the evolution of proteins, the symmetry of the oligomeric associations that produce them, and the chemical, mathematical, and physical basis of the techniques used to study their structures. The latter include image reconstruction, nuclear magnetic resonance spectroscopy, proton exchange, optical spectroscopy, electrophoresis, covalent cross-linking, chemical modification, immunochemistry, hydrodynamics, and the scattering of light, X-radiation, and neutrons. These procedures are applied to study the folding of polypeptides and the assembly of oligomers. Biological membranes and their proteins are also discussed. Structure in Protein Chemistry, Second Edition, bridges the gap between introductory biophysical chemistry courses and research literature. It serves as a comprehensive textbook for advanced undergraduates and graduate students in biochemistry, biophysics, and structural and molecular biology. Professionals engaged in chemical, biochemical, and molecular biological research will find it a useful reference.