Download Free Current Progress In Hyperbolic Systems Riemann Problems And Computations Book in PDF and EPUB Free Download. You can read online Current Progress In Hyperbolic Systems Riemann Problems And Computations and write the review.

Contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Current Progress in Hyperbolic Systems: Riemann Problems and Computations, held at Bowdoin College in July 1988.
This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.
Emil Grosswald was a mathematician of great accomplishment and remarkable breadth of vision. This volume pays tribute to the span of his mathematical interests, which is reflected in the wide range of papers collected here. With contributions by leading contemporary researchers in number theory, modular functions, combinatorics, and related analysis, this book will interest graduate students and specialists in these fields. The high quality of the articles and their close connection to current research trends make this volume a must for any mathematics library.
Today, there is increasing interest in complex geometry, geometric function theory, and integral representation theory of several complex variables. The present collection of survey and research articles comprises a current overview of research in several complex variables in China. Among the topics covered are singular integrals, function spaces, differential operators, and factorization of meromorphic functions in several complex variables via analytic or geometric methods. Some results are reported in English for the first time.
This volume contains the proceedings of the International Workshop on Banach Space Theory, held at the Universidad de Los Andes in Merida, Venezuela in January 1992. These refereed papers contain the newest results in Banach space theory, real or complex function spaces, and nonlinear functional analysis. There are several excellent survey papers, including ones on homogeneous Banach spaces and applications of probability inequalities, in addition to an important research paper on the distortion problem. This volume is notable for the breadth of the mathematics presented.
This book consists of twenty-nine articles contributed by participants of the International Conference in Algebraic Topology held in July 1991 in Mexico. In addition to papers on current research, there are several surveys and expositions on the work of Mark Mahowald, whose sixtieth birthday was celebrated during the conference. The conference was truly international, with over 130 mathematicians from fifteen countries. It ended with a spectacular total eclipse of the sun, a photograph of which appears as the frontispiece. The papers range over much of algebraic topology and cross over into related areas, such as K theory, representation theory, and Lie groups. Also included is a chart of the Adams spectral sequence and a bibliography of Mahowald's publications.
This volume contains refereed papers on themes explored at the AMS-IMS-SIAM Summer Research Conference, Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, held at Mount Holyoke College in 1992. The conference featured a series of one-hour invited lectures on recent advances in commutative algebra and interactions with such areas as algebraic geometry, representation theory, and combinatorics. The major themes of the conference were tight closure Hilbert functions, birational algebra, free resolutions and the homological conjectures, Rees algebras, and local cohomology. With contributions by several leading experts in the field, this volume provides an excellent survey of current research in commutative algebra.
Illuminates the relationship between harmonic analysis and partial differential equations. This book covers topics such as application of fully nonlinear, uniformly elliptic equations to the Monge Ampere equation; and estimates for Green functions for the purpose of studying Dirichlet problems for operators in non-divergence form.