Download Free Current Developments In Mathematics Book in PDF and EPUB Free Download. You can read online Current Developments In Mathematics and write the review.

This volume is a collection of papers on various areas of current interest in mathematical biology, such as epidemic disease modeling, including the effects of vaccination and strain replacement; immunology, such as T-Cell dynamics and the mechanism of phagocytosis; knot theory; DNA computation; and Boolean networks.
This work is concerned with theoretical developments in the area of mathematical programming, development of new algorithms and software and their applications in science and industry. It aims to expose recent mathematical developments to a larger audience in science and industry.
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics—an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors—William Fogg Osgood and Maxime Bôcher—undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators—students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.
This book contains the Proceedings of a symposium that was held in Rotterdam from 12 to 15 January 1982 to celebrate the 25-th anniversary of the Econometric Institute of the Erasmus University. The subject of the symposium, developments in econometrics and related fields, was particularly appropriate for the occasion. In 25 years the research carried out at the Econometric Institute developed from the original seminal work in econometrics, carried out under the supervision of the first director H. Theil, to embrace related areas such as mathematical economics, operations research, systems theory and other branches of mathematics, statistics and probability theory. To review the state of the art in these areas, thirteen leading experts were invited to deliver a lecture at the symposium; their contributions form .the backbone of this book. Together, they illustrate the wide range and scope of the current scientific activity in these fields. The thirteen authoritative surveys should be of great value to researchers and students alike, who want to become acquainted with recent ideas, current trends and future developments in their chosen fields of interest. Each contribution is preceded by an introduction to the author and his work and followed by a summary of the discussion that followed the lecture. A special chapter is devoted to the history of the Econometric Institute.
Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.