Download Free Current Aspects Of Neutrino Physics Book in PDF and EPUB Free Download. You can read online Current Aspects Of Neutrino Physics and write the review.

This book, written by leading experts of the field, gives an excellent up-to-date overview of modern neutrino physics and is useful for scientists and graduate students alike. The book starts with a history of neutrinos and then develops from the fundamentals to the direct determination of masses and lifetimes. The role of neutrinos in fundamental astrophysical problems is discussed in detail.
A deeper understanding of neutrinos, with the goal to reveal their nature and exact role within particle physics, is at the frontier of current research. This book reviews the field in a concise fashion and highlights the most pressing issues and areas of strongest topical interest. It provides a clear, self-contained, and logical treatment of the fundamental physics aspects, appropriate for graduate students. Starting with the relevant basics of the SM, neutrinos are introduced, and the quantum mechanical effect of oscillations is explained in detail. A strong focus is then set on the phenomenon of lepton number violation, especially in 0nbb decay, as the crucial probe to understand the nature of neutrinos. The role of neutrinos in astrophysics, expected to be of increasing importance for future research, is then described. Finally, models to explain the neutrino properties are outlined. The central theme of the book is the nature of neutrino masses and the above topics will revolve around this issue.
The physics of neutrinos--uncharged elementary particles that are key to helping us better understand the nature of our universe--is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model of elementary particles, and this book considers the unanticipated patterns in the masses and mixings of neutrinos in the framework of proposed new theoretical models. The Physics of Neutrinos maps out the ambitious future facilities and experiments that will advance our knowledge of neutrinos, and explains why the way forward in solving the outstanding questions in neutrino science will require the collective efforts of particle physics, nuclear physics, astrophysics, and cosmology.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
The Fourth HEIDELBERG International Conference on Dark Matter in Astro and Particle Physics, DARK2002, was held in Cape Town, South Africa, in the period 4-9 February 2002. This majestic natural area was the site of the first conference of this series (hosted since 1996 in Heidelberg) to be held outside of Germany. Dark Matter has become one of the most exciting and central fields of as trophysics, particle physics and cosmology. The conference covered, as usual for this series, a large range of topics, theoretical and experimental. Topics included Astronomical Evidence for Dark Matter, the Cosmic Microwave Background, Supersymmetry, Inflation and Dark Energy, Structure Formation, Hot and Cold Dark Matter, and Ultrahigh Energy Cosmic Rays all of which were represented by experts in the field. It was very nice to see again many of our 'old' friends in Dark Matter here in South Africa. The organizers were very glad to see, in addition to world experts, the new generation here. Many young participants gave very nice professional talks during the conference. We are grateful to John Ellis for doing an incredible job preparing his excellent summary talk during the sessions. Some special interest and intensive discussions were naturally raised by the first announcement of terrestrial evidence for hot dark matter, obtained from neutrino less double beta decay. This now adds to the evidence for cold dark matter which we have from DAM A for several years already, and which remained unchallenged up to now by other experiments.
Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. Because neutrinos are electrically neutral, they are not affected by the electromagnetic forces which act on electrons. Three types of neutrinos are known. Each type or 'flavour' of neutrino is related to a charged particle (which gives the corresponding neutrino its name). Hence, the 'electron neutrino' is associated with the electron, and two other neutrinos are associated with heavier versions of the electron called the muon and the tau. The book presents citations from the literature for the last three years from the journal literature and the existent book literature. Access is provided by subject, author and title indexes.
A comprehensive introduction to neutrino physics with detailed description of neutrinos and their properties.
When Kai Zuber’s pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field’s seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Third Edition delves into neutrino cross-sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high-energy neutrinos, as well as entirely new experimental results in the context of theoretical models. Written to be accessible to graduate students and readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contributions to it. And like the second edition, it whets the researcher’s appetite, going beyond certainty to pose those questions that still need answers. Features Presents the only single-author comprehensive text on neutrino physics Includes experimental and theoretical particle physics and examines solar neutrinos and astroparticle implications Offers details on new developments and recent experiments
When Kai Zuber’s pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field’s seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Second Edition delves into neutrino cross sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high energy neutrinos, as well as new experimental results in the context of theoretical models. It also provides entirely new discussion on: Resolution of the solar neutrino problem The first real-time measurement of solar neutrinos below 1 MeV Geoneutrinos Long baseline accelerator experiments Written to be accessible to readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contribution to it. And like the first edition, it whets the researcher’s appetite, going beyond certainty to pose those questions that still need answers.
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.