Download Free Current Algebra And Anomalies Book in PDF and EPUB Free Download. You can read online Current Algebra And Anomalies and write the review.

Current algebra remains our most successful analysis of fundamental particle interactions. This collection of surveys on current algebra and anomalies is a successor volume to Lectures on Current Algebra and Its Applications (Princeton Series in Physics, 1972). Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Current algebra and PCAC / S.B. Treiman -- Field theoretic investigations in current algebra / R. Jackiw -- Topological investigations of quantized gauge theories / R. Jackiw -- Chiral anomalies and differential geometry / B. Zumino -- Consistent and covariant anomalies in gauge and gravitational theories / W.A. Bardeen and B. Zumino -- An SU(2) anomaly / E. Witten -- Global aspects of current algebra / E. Witten -- Gravitational anomalies / L. Alvarez-Gaumé and E. Witten -- Current algebra, baryons, and quark confinement / E. Witten -- Skyrmions and QCD / E. Witten
Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
A self-contained introduction to the cohomology theory of Lie groups and some of its applications in physics.
A timely addition to the literature, this volume contains authoritative reviews of three important areas in the physics of elementary particles. Sam B. Treiman, in "Current Algebra and PCAC," reviews the present state of the weak interactions. In "Field Theoretic Investigations in Current Algebra," Roman Jackiw deals with recent developments in current algebra and its applications, giving particular attention to anomalies. David J. Gross covers the high energy inelastic lepton-hadron scattering in his paper, "The High Energy Behavior of Weak and Electromagnetic Interactions." Originally published in 1972. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book presents a modern view of anomalies in quantum field theories. It is divided into six parts. The first part is preparatory covering an introduction to fermions, a description of the classical symmetries, and a short introduction to conformal symmetry. The second part of the book is devoted to the relation between anomalies and cohomology. The third part deals with perturbative methods to compute gauge, diffeomorphism and trace anomalies. In the fourth part the same anomalies are calculated with non-perturbative heat-kernel-like methods. Part five is devoted to the family's index theorem and its application to chiral anomalies, and to the differential characters and their applications to global anomalies. Part six is devoted to special topics including a complete calculation of trace and diffeomorphism anomalies of a Dirac fermion in a MAT background in two dimensions, Wess-Zumino terms in field theories, sigma models, their local and global anomalies and their cancelation, and finally the analysis of the worldsheet, sigma model, and target space anomalies of string and superstring theories. The book is targeted to researchers and graduate students.
This text presents the different aspects of the study of anomalies. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. It includes derivations and calculations
Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness.This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics — the Chern-Simons-Witten theories — widen the scope of this book. Topics discussed here comprises: the ongoing quest for three-manifolds invariant, the role of the mapping class groups in (a) the detection and cancellation of global anomalies, (b) formulating three-manifolds invariant; the geometric quantization of Chern-Simons-Witten theories; deformation quantization; study of chiral and gravitational anomalies; anomalies and the Atiyah-Patodi-Singer Index theorem; exotic spheres; global gravitational anomalies in some six and ten dimensional supergravity and superstring theories, with an additional case study of Witten SU(2) Global Gauge Anomalies.In addition, five chapters lay out the mathematical basis for a thorough use of the topics above. One chapter focuses on the relationship between Teichmüller spaces, moduli spaces and mapping class groups. Another chapter is devoted to mapping class groups and arithmetic groups. Gauge theories on Riemann surfaces are studies in well over two chapters, the first one centered on the theory of bundles and the second on connections.Many readers will find this a useful book, especially theoretical physicists and mathematicians. The material presented here will be of interest to both the experts who will find complete, detailed and precise descriptions of important topics of current interest in mathematical physics, and to students and newcomers to the field, who will appreciate the vast amount of information provided here, especially on global anomalies.