Download Free Culture Of Human Tumor Cells Book in PDF and EPUB Free Download. You can read online Culture Of Human Tumor Cells and write the review.

The culture of cancer cells is routinely practiced in many academic research centers, biotechnology companies, and hospital laboratories. Cancer Cell Culture: Methods and Protocols describes easy-to-follow methods to guide both novice and more experienced researchers seeking to use new techniques in their laboratories. Our present understanding of the cell and molecular biology of cancer has been derived mainly from the use of cultured cancer cells and we cover a number of the most widely used assays to study function in current use. Part I introduces the basic concept of cancer cell culture and this is followed by a description of the general techniques used in many cell culture facilities. The importance of cell line characterization is now widely recognized and methods to characterize and authenticate cell lines are described in Part II. Part III covers the isolation and development of specific cancer cell types and provides valuable tips for those wishing to derive new cell line models. A wide range of procedures encompassing many of the key functional features of cancer cells are described in Part IV including assays to evaluate clonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters. Methods to modify cancer cells are described in Part V, including protocols for transfection, development of drug-resistance, immortalization, and transfer in vivo. In Part VI methods of coculture of different cell types and contamination of cell lines are covered.
Human tumor cells in culture are valuable for studying cancer causes and properties. This convenient reference provides useful information for cancer researchers on commonly used, established tumor cell lines of the major human organ systems. Atlas of Human Tumor Cell Lines includes data about morphological, metabolic, genetic, and growth characteristics of human tumor cells, with morphological characteristics presented in more than 250 photomicrographs. It also contains information for establishing and maintaining human tumor cell lines in culture, and each chapter covers future perspectives. - Covers well-characterized tumor cell lines from the major human organ systems - Presents over 250 photomicrographs, both phase-contrast and electron micrographs - Includes a list of key references for each chapter - Written by world-renowned experts
With many recent advances, cancer cell culture research is more important than ever before. This timely edition of Cancer Cell Culture: Methods and Protocols covers the basic concepts of cancer cell biology and culture while expanding upon the recent shift in cell culture methods from the generation of new cell lines to the use of primary cells. There are methods to characterize and authenticate cell lines, to isolate and develop specific types of cancer cells, and to develop new cell line models. Functional assays are provided for the evaluation of clonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters. Other methods permit the modification of cells for transfection, drug resistance, immortalization, and transfer in vivo, the co-culture of different cell types, and the detection and treatment of contamination. In this new edition, specific emphasis is placed on safe working practice for both cells and laboratory researchers. These chapters contain the information critical to success – only by good practice and quality control will the results of cancer cell culture improve. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Cancer Cell Culture: Methods and Protocols serves as a practical guide for scientists of all backgrounds and aims to convey the appropriate sense of fascination associated with this research field.
Continuous cell lines derived from human cancers are the most widely used resource in laboratory-based cancer research. The first 3 volumes of this series on Human Cell Culture are devoted to these cancer cell lines. The chapters in these first 3 volumes have a common aim. Their purpose is to address 3 questions of fundamental importance to the relevance of human cancer cell lines as model systems of each type of cancer: 1. Do the cell lines available accurately represent the clinical presentation? 2. Do the cell lines accurately represent the histopathology of the original tumors? 3. Do the cell lines accurately represent the molecular genetics of this type of cancer? The cancer cell lines available are derived, in most cases, from the more aggressive and advanced cancers. There are few cell lines derived from low grade organ-confined cancers. This gap can be filled with conditionally immortalized human cancer cell lines. We do not know why the success rate for establishing cell lines is so low for some types of cancer and so high for others. The histopathology of the tumor of origin and the extent to which the derived cell line retains the differentiated features of that tumor are critical. The concept that a single cell line derived from a tumor at a particular site is representative of tumors at that site is naïve and misleading.
Ein neuer Band aus der 'Culture of Specialized Cells'-Reihe. Leserfreundlich aufgemacht. Er vermittelt spezifische praktische Details, wie man Medien und Reagenzien sowie Protokolle für Zellisolierung und Zellkultur präpariert. Logisch aufgebaut und nach spezifischen Tumoren gegliedert. Farbtafeln demonstrieren anschaulich Immunozytochemie und Fluoreszenz in situ Hybridisierung (FISH). Darüber hinaus beschreibt das Buch auch umfangreiche Sicherheitsvorkehrungen. Mit einer Vielzahl nützlicher Tipps. Mit einem Glossar zu ausgewählten Fachtermini. Enthält eine umfangreiche Liste mit Bezugsadressen von Ausrüstung und Zellkulturprodukten. Erläutert medikamentöse Behandlung, Auswahl, Differenzierung, Assays für die Untersuchung maligner Zellen sowie Risiken und Anwendungsmöglichkeiten.
“Infogest” (Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process) is an EU COST action/network in the domain of Food and Agriculture that will last for 4 years from April 4, 2011. Infogest aims at building an open international network of institutes undertaking multidisciplinary basic research on food digestion gathering scientists from different origins (food scientists, gut physiologists, nutritionists...). The network gathers 70 partners from academia, corresponding to a total of 29 countries. The three main scientific goals are: Identify the beneficial food components released in the gut during digestion; Support the effect of beneficial food components on human health; Promote harmonization of currently used digestion models Infogest meetings highlighted the need for a publication that would provide researchers with an insight into the advantages and disadvantages associated with the use of respective in vitro and ex vivo assays to evaluate the effects of foods and food bioactives on health. Such assays are particularly important in situations where a large number of foods/bioactives need to be screened rapidly and in a cost effective manner in order to ultimately identify lead foods/bioactives that can be the subject of in vivo assays. The book is an asset to researchers wishing to study the health benefits of their foods and food bioactives of interest and highlights which in vitro/ex vivo assays are of greatest relevance to their goals, what sort of outputs/data can be generated and, as noted above, highlight the strengths and weaknesses of the various assays. It is also an important resource for undergraduate students in the ‘food and health’ arena.
Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.
This book is a bench manual that provides in one volume all theimportant and unique technologies necessary to studies of mammarygland biology and breast cancer. The chapters are written by expertsin each area with an emphasis on nitty-gritty details that are keypoints for the successful use of a method. Sections include "in""vivo" model systems, special techniques for "in vivo"studies, "in vitro" model systems, and molecular analysis and genetransfer techniques.