Download Free Crystals And Crystal Growth Book in PDF and EPUB Free Download. You can read online Crystals And Crystal Growth and write the review.

Experiments and problems to be done by the non-specialist to aid in his understanding of crystals.
Hydrothermal crystal growth offers a complementary alternative to many of the classical techniques of crystal growth used to synthesise new materials and grow bulk crystals for specific applications. This specialised technique is often capable of growing crystals at temperatures well below their melting points and thus potentially offers routes to new phases or the growth of bulk crystals with less thermal strain. Borate crystals are widely used as nonlinear optical, laser and luminescent materials due to their diversified structures, and good chemical and physical properties. The growth of high-quality borate crystals is required for their applications. A fundamental problem for borate crystal growth is the high-temperature melt structures in the crystal growth systems. This book discusses several crystals and the crystal growth processes.
Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design. Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume
Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space
First book ever printed on growing crystals in a gel medium provides thorough descriptions of the procedure, its history and future potential. "Concise and readable."—Science. 42 illus. 1970 edition.
The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.
This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: * General aspects of crystal growth technology * Silicon * Compound semiconductors * Oxides and halides * Crystal machining * Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.
This is the first-ever textbook on the fundamentals of nucleation, crystal growth and epitaxy. It has been written from a unified point of view and is thus a non-eclectic presentation of this interdisciplinary topic in materials science. The reader is required to possess some basic knowledge of mathematics and physics. All formulae and equations are accompanied by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. The second revised edition includes two separate chapters dealing with the effect of the Enrich-Schwoebel barrier for down-step diffusion, as well as the effect of surface active species, on the morphology of the growing surfaces. In addition, many other chapters are updated accordingly. Thus, it serves as a valuable reference book for both graduate students and researchers in materials science.
In this book, a variety of topics related to crystal growth is extensively discussed. The topics encompass the physics of growing single crystals of different functional materials, single-crystalline thin films, and even the features of crystallization of biofats and oils. It is intended to provide information on advancements in technologies for crystal growth to physicists, researches, as well as engineers working with single-crystalline functional materials.
Introduction to Crystal Growth: Principles and Practice teaches readers about crystals and their origins. It offers a historical perspective of the subject and includes background information whenever possible. The first section of this introductory book takes readers through the historical development and motivation of the field of crystal growth. With more than 40 years of experience in the field, the author covers nucleation, two-dimensional layer growth mechanism, defects in crystals, and screw dislocation theory of crystal growth. He also explains some aspects of the important subject of phase diagrams. The second section focuses on the experimental techniques of crystal growth. For practicing crystal growers, the book provides nuts-and-bolts techniques and tips. It discusses the major techniques categorized by solid–solid, liquid–solid, and vapor–solid equilibria and describes characterization techniques essential to measuring the quality of grown crystals.