Download Free Crystallographic Computing Techniques Book in PDF and EPUB Free Download. You can read online Crystallographic Computing Techniques and write the review.

Computing Methods in Crystallography is a collection of lectures delivered at a Summer School, held in Oxford in August 1962. The book presents the underlying mathematics and computing methods in crystallography. The text covers topics on the algebra required for the fundamental operations of transformation of coordinates, interpolation, approximation of trigonometric and exponential functions, solution of linear equations and derivation of latent roots and vectors; methods for calculation of structure factors, least-squares adjustment, and Fourier series evaluation; the theory and practice of intensity scaling and symmetry determination; and methods of direct phase determination. Crystallographers, physicists, and students in allied fields will find the book very useful.
X-ray crystallography provides a unique opportunity to study the arrangement of atoms in a molecule. This book's modern computer-graphics centered approach facilitates the extrapolation of these valuable observations. A unified treatment of crystal systems, the book explains how atoms are arranged in crystals using the metric matrix. Featuring t
Thirty-five international authorities offer comprehensive review of current computing techniques in crystal-structure analysis. The volume contains sections on data measurement and processing, solution techniques, refinement techniques, accurate electron density analysis, computer software and hardware data-base techniques, and computer graphics. There are also contributions on powder methods and electron diffraction and microscopy.
Direct methods of crystal structure determination are usually associated with techniques in which phases for a set of structure factors are determined from the corresponding experimental amplitudes by probabilistic calcula tions. It is thus implied that such ab initio phase calculations do not require a knowledge of atomic positions, and this basis distinguishes direct methods from other techniques for structure determination. An acceptably wider interpretation of the term direct methods leads to other important applica tions involving, inter alia, the use of heavy atoms, resolution-limited phase data for large molecules, rotation functions, and Fourier series. These topics are discussed in the later chapters of this book. Although some earlier theoretical investigations were made by Harker and Kaspar, direct methods may be considered to have begun around the year 1950. Important landmarks in the development of the subject include the book by Hauptmann and Karle, The Centrosymmetric Crystal (1953), the definitive paper by Karle and Karle in Acta Crystallographica (1966), and the recent (1978) sophisticated program package MULTAN 78 produced mainly by Germain, Main, and Woolfson. Woolfson's book, Direct Methods in Crystallography, was published in 1961, but because of the rapid progress in direct methods, much of it soon became outmoded. It is interesting to note that direct methods nearly came into being many years earlier. Certainly the E2 relationship was used implicitly by Lonsdale in 1928 in determining the crystal structure of hexamethylbenzene.
This book provides a clear introduction to topics which are essential to students in a wide range of scientific disciplines but which are otherwise only covered in specialised and mathematically detailed texts. It shows how crystal structures may be built up from simple ideas of atomic packing and co-ordination, it develops the concepts of crystal symmetry, point and space groups by way of two dimensional examples of patterns and tilings, it explains the concept of the reciprocal lattice in simple terms and shows its importance in an understanding of light, X-ray and electron diffraction. Practical examples of the applications of these techniques are described and also the importance of diffraction in the performance of optical instruments. The book is also of value to the general reader since it shows, by biographical and historical references, how the subject has developed and thereby indicates some of the excitement of scientific discovery.
International Tables for Crystallography is the definitive resource and reference work for crystallography and structural science. Each of the volumes in the series contains articles and tables of data relevant to crystallographic research and to applications of crystallographic methods in all sciences concerned with the structure and properties of materials. Emphasis is given to symmetry, diffraction methods and techniques of crystal-structure determination, and the physical and chemical properties of crystals. The data are accompanied by discussions of theory, practical explanations and examples, all of which are useful for teaching. Volume C provides the mathematical, physical and chemical information needed for experimental studies in structural crystallography. This volume covers all aspects of experimental techniques, using all three principal radiation types (X-ray, electron and neutron), from the selection and mounting of crystals and production of radiation, through data collection and analysis, to interpretation of results. Each chapter is supported by a substantial collection of references, and the volume ends with a section on precautions against radiation injury. Eleven chapters have been revised, corrected or updated for the third edition of Volume C. More information on the series can be found at: http://it.iucr.org
Volume 2 deals with those aspects when there is a stronger correlation of the diffraction phenomena with the electron microscope imaging.
International Tables for Crystallography are no longer available for purchase from Springer. For further information please contact Wiley Inc. (follow the link on the right hand side of this page). Volume B presents accounts of the numerous aspects of reciprocal space in crystallographic research. After an introductory chapter, Part 1 presents the reader with an account of structure-factor formalisms, an extensive treatment of the theory, algorithms and crystallographic applications of Fourier methods, and fundamental as well as advanced treatments of symmetry in reciprocal space. In Part 2, these general accounts are followed by detailed expositions of crystallographic statistics, the theory of direct methods, Patterson techniques, isomorphous replacement and anomalous scattering, and treatments of the role of electron microscopy and diffraction in crystal structure determination, including applications of direct methods to electron crystallography. Part 3 deals with applications of reciprocal space to molecular geometry and `best'-plane calculations, and contains a treatment of the principles of molecular graphics and modelling and their applications. A convergence-acceleration method of importance in the computation of approximate lattice sums is presented and the part concludes with a discussion of the Ewald method. Part 4 contains treatments of various diffuse-scattering phenomena arising from crystal dynamics, disorder and low dimensionality (liquid crystals), and an exposition of the underlying theories and/or experimental evidence. Polymer crystallography and reciprocal-space images of aperiodic crystals are also treated. Part 5 of the volume contains introductory treatments of the theory of the interaction of radiation with matter (dynamical theory) as applied to X-ray, electron and neutron diffraction techniques. The simplified trigonometric expressions for the structure factors in the 230 three-dimensional space groups, which appeared in Volume I of International Tables for X-ray Crystallography, are now given in Appendix 1.4.3 to Chapter 1.4 of this volume. Volume B is a vital addition to the library of scientists engaged in crystal structure determination, crystallographic computing, crystal physics and other fields of crystallographic research. Graduate students specializing in crystallography will find much material suitable for self-study and a rich source of references to the relevant literature.
Designed for easy use by both beginning and experienced protein crystallographers, the second edition of Practical Protein Crystallography is an essential handbook for any scientist interested in solving a protein structure. The book includes examples of actual experiments and data, electron density maps, and computer methods. This second edition has new material covering CCP4, SHELX, cryocrystallography, MAD and automated fitting. - In-depth coverage of every aspect of crystallography - Coverage of the small details that can make or break projects - Strongly application-oriented - Exceptionally well illustrated - Simple and easy-to-follow robust methods - Tutorials with actual data available on the Web - Useful for a broad spectrum of scientists