Download Free Crop Responses To Environment Book in PDF and EPUB Free Download. You can read online Crop Responses To Environment and write the review.

Crop Responses to Environment discusses the principles, theories, and experimental observations concerning plant responses to environment that are particularly relevant to developing improved crop cultivars and management methods. The book illustrates the importance of considering emergent plant properties as well as reductionist approaches to unde
Following in the tradition of its predecessor, Crop Responses to Environment, this fully updated and more comprehensive second edition describes aspects of crop responses to environment that are particularly relevant to the development of improved crop cultivars and management methods on a global scale. It includes an extensive discussion of the difficulties in developing agricultural systems that accommodate increasing human needs for agricultural products during the twenty-first century in a sustainable manner. The book features new sections on adaptation to global climate change including adapting to global warming, elevated atmospheric carbon dioxide concentration, and increased flooding and salinity through plant breeding and changes in crop management. Warming effects include stressful effects of heat on pollen development and reduced winter chilling effects on fruit and nut trees. The book examines principles, theories, mathematical models, and experimental observations concerning plant responses to environment that are relevant to the development of improved crop cultivars and management methods. It illustrates the importance of considering emergent plant properties as well as reductionist approaches to understanding plant function and adaptation. Plant physiological and developmental responses to light and temperature, and plant water relations are considered in detail. Dr. Hall also describes climatic zone definitions based on temperature, rainfall, and evaporative demand in relation to plant adaptation and the prediction of crop water use. Irrigation management and crop responses to salinity, flooding and toxic levels of boron and aluminum are considered. Crop responses to pests and diseases as they interact with crop responses to physical and chemical aspects of the environment are examined. The book concludes with analyses illustrating the relevance of crop responses to environment to plant breeding.
"Following in the tradition of its predecessor, Crop Responses to Environment, this fully updated and more comprehensive second edition describes aspects of crop responses to environment that are particularly relevant to the development of improved crop cultivars and management methods on a global scale. It includes an extensive discussion of the difficulties in developing agricultural systems that accommodate increasing human needs for agricultural products during the twenty-first century in a sustainable manner. The book features new sections on adaptation to global climate change including adapting to global warming, elevated atmospheric carbon dioxide concentration, and increased flooding and salinity through plant breeding and changes in crop management. Warming effects include stressful effects of heat on pollen development and reduced winter chilling effects on fruit and nut trees. The book examines principles, theories, mathematical models, and experimental observations concerning plant responses to environment that are relevant to the development of improved crop cultivars and management methods. It illustrates the importance of considering emergent plant properties as well as reductionist approaches to understanding plant function and adaptation. Plant physiological and developmental responses to light and temperature, and plant water relations are considered in detail. Dr. Hall also describes climatic zone definitions based on temperature, rainfall, and evaporative demand in relation to plant adaptation and the prediction of crop water use. Irrigation management and crop responses to salinity, flooding and toxic levels of boron and aluminum are considered. Crop responses to pests and diseases as they interact with crop responses to physical and chemical aspects of the environment are examined. The book concludes with analyses illustrating the relevance of crop responses to environment to plant breeding."--Provided by publisher.
Examine the ways in which various plants respond when exposed to high and low temperatures! The growing demand for food makes breeding for high-yielding crops with built-in resistance against environmental constraints one of the most important challenges for plant breeders today. Crop Responses and Adaptations to Temperature Stress investigates the adaptive mechanisms plants have evolved in response to unfavorable temperature conditions. It describes gene transfer technology and other tolerance improvement techniques that aid in developing stress-tolerant plants. Adverse environmental stress conditions, such as extreme temperatures, affect the productivity of important world food crops by inhibiting plant growth and development. Crop Responses and Adaptations to Temperature Stress provides valuable information on the mechanisms of stress tolerance in plants that encourage growth and enhance yield performance. Agriculture professionals, researchers, and plant breeders will benefit from the ideas shared on such topics as: mechanisms of chilling injury and tolerance injury and acclimation of root system functions during chilling temperatures mechanisms of cold acclimation signal transduction under low-temperature stress mechanisms of thermotolerance in crops control of the heat shock response in crop plants the effects of heat stress on cereal yield and quality Crop Responses and Adaptations to Temperature Stress presents detailed discussions on the effects and outcomes of crop exposure to low and high temperatures. The textual information is liberally supplemented with visual representations of field experiment data as well as comprehensive tables and schematic drawings. In addition to a detailed review of current knowledge on the molecular biology of plant responses to temperature stress and an introduction to biotechnological advances in improving crop tolerance, Crop Responses and Adaptations to Temperature Stress suggests avenues for further study and speculates on the implications of such work for the future of food production.
The monograph entitled “Crop responses to Global warming” describes the normal historical shifts in the earth’s atmospheric temperature and weighs the evidence concerning anthropogenic induced changes in the level of temperature. The unprecedented increase in the earth’s temperature after pre industrial period has been possibly related to the anthropogenic activities. This monograph will give an overview of the global as well as Indian crops productivity in relation to the rise in the earth’s surface temperature. A chapter in this monograph is on the technologies to study the response of crop plants to the elevated temperature. The impact assessment analysis of rising temperature on crops such as wheat, rice, maize, soybean, cotton and brassica are described, reviewed and discussed in separate chapters as case studies. The responses of physiological processes and biochemical reactions to the elevated temperature in crop plants are described crop wise. The monograph also includes the impact of elevating temperature on crop weed interaction, pest and diseases and soil dynamics for each crop species independently. The mitigation technologies to counter the adverse effect of high temperature stress are described for each crop according to their cultivation and climatic conditions. The future research strategies for each crop to meet the threat of elevating temperature on crop productivity and food security is described and discussed. The description of temperature enrichment technologies will help researchers and scientists to study the responses of biological materials to rising temperature. The monograph will be the main text for teaching climate change, global warming and environmental botany as no such book is currently available relating to the rising atmospheric temperature on crop plants. Therefore, the monograph will be highly useful for students of global climate change, environmental botany and agricultural sciences, scientists, researchers, farmers and policy makers
Climate Change and Crop Stress: Molecules to Ecosystems expounds on the transitional period where science has progressed to ‘post-genomics’ and the gene editing era, putting field performance of crops to the forefront and challenging the production of practical applicability vs. theoretical possibility. Researchers have concentrated efforts on the effects of environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection which can have a devastating impact on plant growth and yield. Designed to deliver information to combat stress both in isolation and through simultaneous crop stresses, this edited compilation provides a comprehensive view on the challenges and impacts of simultaneous stresses. Presents a multidisciplinary view of crop stresses, empowering readers to quickly align their individual experience and perspective with the broader context Combines the mechanistic aspects of stresses with the strategic aspects Presents both abiotic and biotic stresses in a single volume
Plant Perspectives to Global Climate Changes: Developing Climate-Resilient Plants reviews and integrates currently available information on the impact of the environment on functional and adaptive features of plants from the molecular, biochemical and physiological perspectives to the whole plant level. The book also provides a direction towards implementation of programs and practices that will enable sustainable production of crops resilient to climatic alterations. This book will be beneficial to academics and researchers working on stress physiology, stress proteins, genomics, proteomics, genetic engineering, and other fields of plant physiology. Advancing ecophysiological understanding and approaches to enhance plant responses to new environmental conditions is critical to developing meaningful high-throughput phenotyping tools and maintaining humankind’s supply of goods and services as global climate change intensifies. Illustrates the central role for plant ecophysiology in applying basic research to address current and future challenges for humans Brings together global leaders working in the area of plant-environment interactions and shares research findings Presents current scenarios and future plans of action for the management of stresses through various approaches
Key features: Describes the effects and responses of the macro and micro levels of crops under the different components of climate change Reports on the adaptation and resilience of food production systems within the changing climate Covers how plants cope with the changing climate including physiological, biochemical, phenotype, and ecosystem responses Provides an in-depth discussion on the importance of agricultural education connected to climate change Presenting an overview of agroecology within the framework of climate change, this book looks at the impact of our changing climate on crop production and agroecosystems, reporting on how plants will cope with these changes, and how we can mitigate these negative impacts to ensure food production for the growing population. It explores the ways that farmers can confront the challenges of climate change, with contributed chapters from around the world demonstrating the different challenges associated with differing climates. Examples are provided of the approaches being taken right now to expand the ecological, physiological, morphological, and productive potential of a range of crop types. Giving readers a greater understanding of the mechanisms of plant resilience to climate change, this book provides new insights into improving the productivity of an individual crop species as well as bringing resistance and resiliency to the entire agroecosystem. It offers a strong foundation for changing research and education programs so that they build the resistance and resilience that will be needed for the uncertain climate future ahead.
Examine the ways in which various plants respond when exposed to high and low temperatures! The growing demand for food makes breeding for high-yielding crops with built-in resistance against environmental constraints one of the most important challenges for plant breeders today. Crop Responses and Adaptations to Temperature Stress investigates the adaptive mechanisms plants have evolved in response to unfavorable temperature conditions. It describes gene transfer technology and other tolerance improvement techniques that aid in developing stress-tolerant plants. Adverse environmental stress conditions, such as extreme temperatures, affect the productivity of important world food crops by inhibiting plant growth and development. Crop Responses and Adaptations to Temperature Stress provides valuable information on the mechanisms of stress tolerance in plants that encourage growth and enhance yield performance. Agriculture professionals, researchers, and plant breeders will benefit from the ideas shared on such topics as: mechanisms of chilling injury and tolerance injury and acclimation of root system functions during chilling temperatures mechanisms of cold acclimation signal transduction under low-temperature stress mechanisms of thermotolerance in crops control of the heat shock response in crop plants the effects of heat stress on cereal yield and quality Crop Responses and Adaptations to Temperature Stress presents detailed discussions on the effects and outcomes of crop exposure to low and high temperatures. The textual information is liberally supplemented with visual representations of field experiment data as well as comprehensive tables and schematic drawings. In addition to a detailed review of current knowledge on the molecular biology of plant responses to temperature stress and an introduction to biotechnological advances in improving crop tolerance, Crop Responses and Adaptations to Temperature Stress suggests avenues for further study and speculates on the implications of such work for the future of food production.
Crop model intercomparison and improvement are required to advance understanding of the impact of future climate change on crop growth and yield. The initial efforts undertaken in the Agriculture Model Intercomparison and Improvement Project (AgMIP) led to several observations where crop models were not adequately simulating growth and development. These studies revealed where enhanced efforts should be undertaken in experimental data to quantify the carbon dioxide × temperature × water interactions in plant growth and yield. International leaders in this area held a symposium at the 2013 ASA, CSSA, and SSSA Annual Meeting to discuss this topic. This volume in the Advances in Agricultural Systems Modeling series presents experimental observations across crops and simulation modeling outcomes and addresses future challenges in improving crop simulation models. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.