Download Free Crop Improvement By Omics And Bioinformatics Book in PDF and EPUB Free Download. You can read online Crop Improvement By Omics And Bioinformatics and write the review.

Crop improvement has been continuously driven by the demand for food security and sustainability. The caloric and nutritional needs of a growing world population require that global food production increase by one billion tons over the next few decades, but the current growth rate falls far short. Moreover, rapid changes in the environment are accelerating land degradation, aggravating pests and diseases, introducing extreme stresses, and reducing crop productivity. Genetic technologies and molecular breeding tools offer novel opportunities for modern crop breeding. In the past few decades, remarkable progress has been achieved in the discovery of genes for crop yield, quality, and resistance and in the dissection of plant molecular mechanisms. With the continuous advancement in sequencing technology, molecular markers, and gene editing, a large number of excellent crop varieties have been cultivated.
​The field of plant breeding has grown rapidly in the last decade with breakthrough research in genetics and genomics, inbred development, population improvement, hybrids, clones, self-pollinated crops, polyploidy, transgenic breeding and more. This book discusses the latest developments in all these areas but explores the next generation of needs and discoveries including omics beyond genomics, cultivar seeds and intellectual and property rights. This book is a leading-edge publication of the latest results and forecasts important areas of future needs and applications.​
Crop Improvement: Biotechnological Advances – Biomedical Science The field of biotechnology is advancing at a fast pace. The availability of low-cost DNA/genome sequencing technologies has led to the discovery and functional characterization of myriad of genes imparting stress tolerance and quality traits. The ‘omics’ group of technologies including genomics, proteomics, transcriptomics and metabolomics has revolutionized the agricultural biotechnology sector. The Nobel Prize-winning technology, such as the genome editing technique, is being employed to edit various gene functions in plants aiding in crop improvement. This technology may be adopted very quickly by consumers compared with the transgenic technique because the genome-edited plants have no adverse effects on the genome of the plant itself and on the environment and related species/non-target organisms. In this book, authors have attempted to compile the latest techniques of agricultural biotechnology and their applications in crop improvement. Certain chapters have been dedicated to describe the use of nanotechnology, a fast emerging new technique in the agriculture sector. Features Development, potential and safety issues in biotechnology Advances in genomics, proteomics and transcriptomics in agriculture Protein bioinformatics and its applications Genetically modified (GM) technology and its implications Genome editing in crop improvement Marker-assisted selection (MAS) in crop improvement Mutation breeding Cryobiotechnology Nanotechnology and biosensors This book includes real-world examples and applications making it accessible to a broader interdisciplinary readership. We hope that it will serve as a reference book for researchers engaged in molecular biology and biotechnology and will act as a ready reckoner for postgraduate (PG) students in the biotechnology discipline.
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research. - Reviews techniques used for crop improvement, from selection and crossing over, to microorganismal approaches - Explores the role of conventional biotechnology in crop improvement - Summarizes the combined approaches of cytogenetics and biotechnology for crop improvement, including the importance of molecular techniques in this process - Focuses on the emerging role of bioinformatics for crop improvement
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.
Computational and high-throughput methods, such as genomics, proteomics, and transcriptomics, known collectively as “-omics,” have been used to study plant biology for well over a decade now. As these technologies mature, plant and crop scientists have started using these methods to improve crop varieties. Omics in Plant Breeding provides a timely introduction to key omicsbased methods and their application in plant breeding. Omics in Plant Breeding is a practical and accessible overview of specific omics-based methods ranging from metabolomics to phenomics. Covering a single methodology within each chapter, this book provides thorough coverage that ensures a strong understanding of each methodology both in its application to, and improvement of, plant breeding. Accessible to advanced students, researchers, and professionals, Omics in Plant Breeding will be an essential entry point into this innovative and exciting field. • A valuable overview of high-throughput, genomics-based technologies and their applications to plant breeding • Each chapter explores a single methodology, allowing for detailed and thorough coverage • Coverage ranges from well-established methodologies, such as genomics and proteomics, to emerging technologies, including phenomics and physionomics Aluízio Borém is a Professor of Plant Breeding at the University of Viçosa in Brazil. Roberto Fritsche-Neto is a Professor of Genetics and Plant Breeding at the University of São Paulo in Brazil.
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.
This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.
Bioinformatics in Agriculture: Next Generation Sequencing Era is a comprehensive volume presenting an integrated research and development approach to the practical application of genomics to improve agricultural crops. Exploring both the theoretical and applied aspects of computational biology, and focusing on the innovation processes, the book highlights the increased productivity of a translational approach. Presented in four sections and including insights from experts from around the world, the book includes: Section I: Bioinformatics and Next Generation Sequencing Technologies; Section II: Omics Application; Section III: Data mining and Markers Discovery; Section IV: Artificial Intelligence and Agribots. Bioinformatics in Agriculture: Next Generation Sequencing Era explores deep sequencing, NGS, genomic, transcriptome analysis and multiplexing, highlighting practices forreducing time, cost, and effort for the analysis of gene as they are pooled, and sequenced. Readers will gain real-world information on computational biology, genomics, applied data mining, machine learning, and artificial intelligence. This book serves as a complete package for advanced undergraduate students, researchers, and scientists with an interest in bioinformatics. - Discusses integral aspects of molecular biology and pivotal tool sfor molecular breeding - Enables breeders to design cost-effective and efficient breeding strategies - Provides examples ofinnovative genome-wide marker (SSR, SNP) discovery - Explores both the theoretical and practical aspects of computational biology with focus on innovation processes - Covers recent trends of bioinformatics and different tools and techniques
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.