Download Free Critical Questions In Stem Education Book in PDF and EPUB Free Download. You can read online Critical Questions In Stem Education and write the review.

This edited volume offers a crosscutting view of STEM and is comprised of work by scholars in science, technology, engineering, and mathematics education. It offers a view of STEM from the disciplines that comprise it, while adhering to the idea that STEM itself is an interdisciplinary treatment of all the associated disciplines in a meaningful way. This book raises and answers questions regarding the meaning of STEM education and research. This volume is divided into three sections: the first one describes the nature of the component disciplines of STEM. The next section presents work from leaders representing all STEM disciplines and deals with aspects such as K-12 and post-secondary education. The last section draws conclusions regarding the natures of the disciplines, challenges and advantages of STEM education in terms of theoretical and practical implications. The two final chapters compile arguments from the research chapters, describing themes in research results, and making recommendations for best STEM education practice, and examining areas for future research in STEM education.
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.
This publication reviews research findings related to the verbal questioning behaviors and practices of teachers. It emphasizes current research related to the impact of questioning practices on student thinking, achievement, and attitudes. This includes questioning techniques and strategies and approaches to analyzing classroom questions. A list of teaching suggestions synthesized from a variety of research studies dealing with questioning is presented: (1) plan key questions to provide lesson structure and direction; (2) phrase questions clearly and specifically; (3) adapt questions to student ability level; (4) ask questions logically and sequentially; (5) ask questions at a variety of levels; (6) follow up student responses; (7) give students time to think; (8) encourage student questions; and (9) use questions that encourage wide student participation. These techniques are discussed and analyzed as they apply to improvement of teachers' questioning practices and the impact on learning outcomes. The final section of the monograph is devoted to methods for improving teachers' questioning practices. (JD)
How do you create effective STEM classrooms that energize students, help them grow into creative thinkers and collaborators, and prepare them for their futures? This practical book from expert Anne Jolly has all the answers and tools you need to get started or enhance your current program. Based on the author’s popular MiddleWeb blog of the same name, STEM by Design reveals the secrets to successful lessons in which students use science, math, and technology to solve real-world engineering design problems. You’ll learn how to: Select and adapt quality existing STEM lessons that present authentic problems, allow for creative approaches, and engage students in meaningful teamwork; Create your own student-centered STEM lessons based on the Engineering Design Process; Assess students’ understanding of basic STEM concepts, their problem-solving abilities, and their level of engagement with the material; Teach STEM in after-school programs to further build on concepts covered in class; Empower girls to aspire to careers in STEM and break down the barriers of gender bias; Tap into STEM's project-based learning style to attract and engage all students. Throughout this user-friendly book, you’ll find design tools such as checklists, activities, and assessments to aid you in developing or adapting STEM lessons. These tools, as well as additional teacher resources, are also available as free downloads from the book’s website, http://www.stem-by-design.com.
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
"If you are interested in STEM education, policies, programs or practices, or you work on STEM in some capacity at any level, The case for STEM education will prove to be valuable reading. Author Rodger W. Bybee has written this book to inspire individuals in leadership roles to better understand and take action on STEM initiatives. The book's 10 chapters accomplish several tasks: Put STEM in context by outlining the challenges facing STEM education, drawing lessons from the Sputnik moment of the 1950s and 1960s, and contrasting contemporary STEM with other education reforms; Explore appropriate roles for the federal government, as well as states, districts, and individual schools; Offer several ideas and recommendations you can use to develop action plans for STEM. With an emphasis on both thinking and acting, The case for STEM education is a must-read for leaders at all levels: national and state policy makers, state-level educators responsible for STEM initiatives, college and university faculty who educate future STEM teachers, local administrators who make decisions about district and school programs, and teachers who represent STEM disciplines." - Back cover.
2022 PROSE Award Finalist Drawing on narratives from hundreds of Black, Latinx, and Indigenous individuals, Ebony Omotola McGee examines the experiences of underrepresented racially minoritized students and faculty members who have succeeded in STEM. Based on this extensive research, McGee advocates for structural and institutional changes to address racial discrimination, stereotyping, and hostile environments in an effort to make the field more inclusive. Black, Brown, Bruised reveals the challenges that underrepresented racially minoritized students confront in order to succeed in these exclusive, usually all-White, academic and professional realms. The book provides searing accounts of racism inscribed on campus, in the lab, and on the job, and portrays learning and work environments as arenas rife with racial stereotyping, conscious and unconscious bias, and micro-aggressions. As a result, many students experience the effects of a racial battle fatigue—physical and mental exhaustion borne of their hostile learning and work environments—leading them to abandon STEM fields entirely. McGee offers policies and practices that must be implemented to ensure that STEM education and employment become more inclusive including internships, mentoring opportunities, and curricular offerings. Such structural changes are imperative if we are to reverse the negative effects of racialized STEM and unlock the potential of all students to drive technological innovation and power the economy.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it. The recommended indicators provide a framework for Congress and relevant deferral agencies to create and implement a national-level monitoring and reporting system that: assesses progress toward key improvements recommended by a previous National Research Council (2011) committee; measures student knowledge, interest, and participation in the STEM disciplines and STEM-related activities; tracks financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels; provides information about the capabilities of the STEM education workforce, including teachers and principals; and facilitates strategic planning for federal investments in STEM education and workforce development when used with labor force projections. All 14 indicators explained in this report are intended to form the core of this system. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? summarizes the 14 indicators and tracks progress towards the initial report's recommendations.
The widely used STEM education book, updated Teaching and Learning STEM: A Practical Guide covers teaching and learning issues unique to teaching in the science, technology, engineering, and math (STEM) disciplines. Secondary and postsecondary instructors in STEM areas need to master specific skills, such as teaching problem-solving, which are not regularly addressed in other teaching and learning books. This book fills the gap, addressing, topics like learning objectives, course design, choosing a text, effective instruction, active learning, teaching with technology, and assessment—all from a STEM perspective. You’ll also gain the knowledge to implement learner-centered instruction, which has been shown to improve learning outcomes across disciplines. For this edition, chapters have been updated to reflect recent cognitive science and empirical educational research findings that inform STEM pedagogy. You’ll also find a new section on actively engaging students in synchronous and asynchronous online courses, and content has been substantially revised to reflect recent developments in instructional technology and online course development and delivery. Plan and deliver lessons that actively engage students—in person or online Assess students’ progress and help ensure retention of all concepts learned Help students develop skills in problem-solving, self-directed learning, critical thinking, teamwork, and communication Meet the learning needs of STEM students with diverse backgrounds and identities The strategies presented in Teaching and Learning STEM don’t require revolutionary time-intensive changes in your teaching, but rather a gradual integration of traditional and new methods. The result will be a marked improvement in your teaching and your students’ learning.