Download Free Critical Philosophy Of Mathematics Book in PDF and EPUB Free Download. You can read online Critical Philosophy Of Mathematics and write the review.

First published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
In Nineteen Eighty-Four George Orwell gives a description of different forms of suppression. We learn about the telescreens placed everywhere, through which it is possible for Big-Brother to watch the inhabitants of Oceania. However, it is not only important to control the activities of the inhabitants, it is important as well to control their thoughts, and the Thought Police are on guard. This is a very direct form of monitoring and control, but Orwell also outlines a more imperceptible and calculated line of thought control. In the Appendix to Nineteen Eighty-Four Orwell explains some struc tures of 'Newspeak', which is going to become the official language of Oceania. Newspeak is being developed by the Ministry of Truth, and this language has to substitute 'Oldspeak' (similar to standard English). Newspeak should fit with the official politics of Oceania ruled by the Ingsoc party: "The purpose of Newspeak was not only to provide a medium of expression for the world-view and mental habits proper to the devotees of Ingsoc, but to make all other modes of thought impos sible. It was intended that when Newspeak had been adopted once and for all and Oldspeak forgotten, a heretical thought - that is, a thought diverging from the principles of Ingsoc - should be literally unthink able, at least as far as thought is dependent on words.
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
This book offers an archeology of the undeveloped potential of mathematics for critical theory. As Max Horkheimer and Theodor W. Adorno first conceived of the critical project in the 1930s, critical theory steadfastly opposed the mathematization of thought. Mathematics flattened thought into a dangerous positivism that led reason to the barbarism of World War II. The Mathematical Imagination challenges this narrative, showing how for other German-Jewish thinkers, such as Gershom Scholem, Franz Rosenzweig, and Siegfried Kracauer, mathematics offered metaphors to negotiate the crises of modernity during the Weimar Republic. Influential theories of poetry, messianism, and cultural critique, Handelman shows, borrowed from the philosophy of mathematics, infinitesimal calculus, and geometry in order to refashion cultural and aesthetic discourse. Drawn to the austerity and muteness of mathematics, these friends and forerunners of the Frankfurt School found in mathematical approaches to negativity strategies to capture the marginalized experiences and perspectives of Jews in Germany. Their vocabulary, in which theory could be both mathematical and critical, is missing from the intellectual history of critical theory, whether in the work of second generation critical theorists such as Jürgen Habermas or in contemporary critiques of technology. The Mathematical Imagination shows how Scholem, Rosenzweig, and Kracauer’s engagement with mathematics uncovers a more capacious vision of the critical project, one with tools that can help us intervene in our digital and increasingly mathematical present. The Mathematical Imagination is available from the publisher on an open-access basis.
Mathematics is traditionally seen as the most neutral of disciplines, the furthest removed from the arguments and controversy of politics and social life. However, critical mathematics challenges these assumptions and actively attacks the idea that mathematics is pure, objective, and value?neutral. It argues that history, society, and politics have shaped mathematics—not only through its applications and uses but also through molding its concepts, methods, and even mathematical truth and proof, the very means of establishing truth. Critical mathematics education also attacks the neutrality of the teaching and learning of mathematics, showing how these are value?laden activities indissolubly linked to social and political life. Instead, it argues that the values of openness, dialogicality, criticality towards received opinion, empowerment of the learner, and social/political engagement and citizenship are necessary dimensions of the teaching and learning of mathematics, if it is to contribute towards democracy and social justice. This book draws together critical theoretic contributions on mathematics and mathematics education from leading researchers in the field. Recurring themes include: The natures of mathematics and critical mathematics education, issues of epistemology and ethics; Ideology, the hegemony of mathematics, ethnomathematics, and real?life education; Capitalism, globalization, politics, social class, habitus, citizenship and equity. The book demonstrates the links between these themes and the discipline of mathematics, and its critical teaching and learning. The outcome is a groundbreaking collection unified by a shared concern with critical perspectives of mathematics and education, and of the ways they impact on practice.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also included.
An explanation of the foundations of Kant's philosophy of mathematics and its connection to his account of human experience.
A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.