Download Free Creative Chemists Strategies For Teaching And Learning Book in PDF and EPUB Free Download. You can read online Creative Chemists Strategies For Teaching And Learning and write the review.

Creative thinking, be it that of the teacher or the student, has tended to be overlooked in science, but exercising it is important. This book shows how it can be done in chemistry, both in the context of creative chemistry teaching and in learning chemistry. Going beyond principles and ideology, readers will find practical strategies, tools, examples, and case studies in a variety of contexts to bring creative thinking theory into practice. Beginning with a discussion on the nature of creativity, the authors’ debunk misconceptions and address the relationship between creativity and problem solving. Delving into opportunities for practising creative thinking in science, for instance, hypothesis generation and experiment design, the authors’ then move on to discussions around assessing and evaluating creative thinking. Further areas covered include: multisensory chemistry, language and literacy, practical work and story-telling. As a resource, this book points the way to fostering exploration and the development of creative thinking in chemistry for the benefit of the student, and for the benefit of the teacher in offering a source of satisfaction and achievement in the work they do. With a foreword by John Holman.
Creative thinking, be it that of the teacher or the student, has tended to be overlooked in science, but exercising it is important. This book shows how it can be done in chemistry, both in the context of creative chemistry teaching and in learning chemistry.Going beyond principles and ideology, readers will find practical strategies, tools, examples, and case studies in a variety of contexts to bring creative thinking theory into practice. Beginning with a discussion on the nature of creativity, the authors’ debunk misconceptions and address the relationship between creativity and problem solving. Delving into opportunities for practising creative thinking in science, for instance, hypothesis generation and experiment design, the authors’ then move on to discussions around assessing and evaluating creative thinking. Further areas covered include: multisensory chemistry, language and literacy, practical work and story-telling. As a resource, this book points the way to fostering exploration and the development of creative thinking in chemistry for the benefit of the student, and for the benefit of the teacher in offering a source of satisfaction and achievement in the work they do.With a foreword by John Holman.
Authored by renowned experts in the field of chemistry education, this book provides a holistic approach to cover all issues related to learning and teaching in the chemistry laboratory.
Education is always evolving, and most recently has shifted to increased online or remote learning. Digital Learning and Teaching in Chemistry compiles the established and emerging trends in this field, specifically within the context of learning and teaching in chemistry. This book shares insights about five major themes: best practices for teaching and learning digitally, digital learning platforms, virtual visualisation and laboratory to promote learning in science, digital assessment, and building communities of learners and educators. The authors are chemistry instructors and researchers from nine countries, contributing an international perspective on digital learning and teaching in chemistry. While the chapters in this book span a wide variety of topics, as a whole, they focus on using technology and digital platforms as a method for supporting inclusive and meaningful learning. The best practices and recommendations shared by the authors are highly relevant for modern chemistry education, as teaching and learning through digital methods is likely to persist. Furthermore, teaching chemistry digitally has the potential to bring greater equity to the field of chemistry education in terms of who has access to quality learning, and this book will contribute to that goal. This book will be essential reading for those working in chemical education and teaching. Yehudit Judy Dori is internationally recognised, formerly Dean of the Faculty of Education of Science and Technology at the Technion Israel Institute of Technology and won the 2020 NARST Distinguished Contributions to Science Education through Research Award–DCRA for her exceptional research contributions. Courtney Ngai and Gabriela Szteinberg are passionate researchers and practitioners in the education field. Courtney Ngai is the Associate Director of the Office of Undergraduate Research and Artistry at Colorado State University. Gabriela Szteinberg serves as Assistant Dean and Academic Coordinator for the College of Arts and Sciences at Washington University in St. Louis.
Problem solving is central to the teaching and learning of chemistry at secondary, tertiary and post-tertiary levels of education, opening to students and professional chemists alike a whole new world for analysing data, looking for patterns and making deductions. As an important higher-order thinking skill, problem solving also constitutes a major research field in science education. Relevant education research is an ongoing process, with recent developments occurring not only in the area of quantitative/computational problems, but also in qualitative problem solving. The following situations are considered, some general, others with a focus on specific areas of chemistry: quantitative problems, qualitative reasoning, metacognition and resource activation, deconstructing the problem-solving process, an overview of the working memory hypothesis, reasoning with the electron-pushing formalism, scaffolding organic synthesis skills, spectroscopy for structural characterization in organic chemistry, enzyme kinetics, problem solving in the academic chemistry laboratory, chemistry problem-solving in context, team-based/active learning, technology for molecular representations, IR spectra simulation, and computational quantum chemistry tools. The book concludes with methodological and epistemological issues in problem solving research and other perspectives in problem solving in chemistry. With a foreword by George Bodner.
Reasoning about structure-reactivity and chemical processes is a key competence in chemistry. Especially in organic chemistry, students experience difficulty appropriately interpreting organic representations and reasoning about the underlying causality of organic mechanisms. As organic chemistry is often a bottleneck for students’ success in their career, compiling and distilling the insights from recent research in the field will help inform future instruction and the empowerment of chemistry students worldwide. This book brings together leading research groups to highlight recent advances in chemistry education research with a focus on the characterization of students’ reasoning and their representational competencies, as well as the impact of instructional and assessment practices in organic chemistry. Written by leaders in the field, Student Reasoning in Organic Chemistry is ideal for chemistry education researchers, instructors and practitioners, and graduate students in chemistry education.
For the first time, this book sets out ways to teach the science of nanochemistry at a level suitable for pre-service and in-service teachers in middle and secondary school. The authors draw upon peer-reviewed science education literature for experiments, activities, educational research, and methods of teaching the subject. The book starts with an overview of chemical nanotechnology, including definition of the basic concepts in nanoscience, properties, types of nanostructured materials, synthesis, characterization, and applications. It includes examples of how nanochemistry impacts our daily lives. This theoretical background is an address for teachers even if they do not have enough information about the subject of nanoscale science. Subsequent chapters present best practices for presenting the material to students in a way that improves their attitudes and knowledge toward nanochemistry and STEM subjects in general. The final chapter includes experiments designed for middle and high school students. From basic science through to current and near-future developments for applications of nanomaterials and nanostructures in medicine, electronics, energy, and the environment, users of the book will find a wealth of ideas to convey nanochemistry in an engaging way to students.
Chemistry is often seen as a difficult subject to understand. This book focusses on the triangle model that Alex H. Johnstone developed in the early 1980s. The model has been applied in almost every area of education in chemistry at all stages of learning.
Many projects in recent years have applied context-based learning and engagement tools to the fostering of long-term student engagement with chemistry. While empirical evidence shows the positive effects of context-based learning approaches on students’ interest, the long-term effects on student engagement have not been sufficiently highlighted up to now. Edited by respected chemistry education researchers, and with contributions from practitioners across the world, Engaging Learners with Chemistry sets out the approaches that have been successfully tested and implemented according to different criteria, including informative, interactive, and participatory engagement, while also considering citizenship and career perspectives. Bringing together the latest research in one volume, this book will be useful for chemistry teachers, researchers in chemistry education and professionals in the chemical industry seeking to attract students to careers in the chemical sector.
This book explores evidence-based practice in college science teaching. It is grounded in disciplinary education research by practicing scientists who have chosen to take Wieman’s (2014) challenge seriously, and to investigate claims about the efficacy of alternative strategies in college science teaching. In editing this book, we have chosen to showcase outstanding cases of exemplary practice supported by solid evidence, and to include practitioners who offer models of teaching and learning that meet the high standards of the scientific disciplines. Our intention is to let these distinguished scientists speak for themselves and to offer authentic guidance to those who seek models of excellence. Our primary audience consists of the thousands of dedicated faculty and graduate students who teach undergraduate science at community and technical colleges, 4-year liberal arts institutions, comprehensive regional campuses, and flagship research universities. In keeping with Wieman’s challenge, our primary focus has been on identifying classroom practices that encourage and support meaningful learning and conceptual understanding in the natural sciences. The content is structured as follows: after an Introduction based on Constructivist Learning Theory (Section I), the practices we explore are Eliciting Ideas and Encouraging Reflection (Section II); Using Clickers to Engage Students (Section III); Supporting Peer Interaction through Small Group Activities (Section IV); Restructuring Curriculum and Instruction (Section V); Rethinking the Physical Environment (Section VI); Enhancing Understanding with Technology (Section VII), and Assessing Understanding (Section VIII). The book’s final section (IX) is devoted to Professional Issues facing college and university faculty who choose to adopt active learning in their courses. The common feature underlying all of the strategies described in this book is their emphasis on actively engaging students who seek to make sense of natural objects and events. Many of the strategies we highlight emerge from a constructivist view of learning that has gained widespread acceptance in recent years. In this view, learners make sense of the world by forging connections between new ideas and those that are part of their existing knowledge base. For most students, that knowledge base is riddled with a host of naïve notions, misconceptions and alternative conceptions they have acquired throughout their lives. To a considerable extent, the job of the teacher is to coax out these ideas; to help students understand how their ideas differ from the scientifically accepted view; to assist as students restructure and reconcile their newly acquired knowledge; and to provide opportunities for students to evaluate what they have learned and apply it in novel circumstances. Clearly, this prescription demands far more than most college and university scientists have been prepared for.