Download Free Coverage Control In Sensor Networks Book in PDF and EPUB Free Download. You can read online Coverage Control In Sensor Networks and write the review.

The advances in sensor design have decreased the size, weight, and cost of sensors by orders of magnitude, yet with the increase of higher spatial and temporal re- lution and accuracy. With the fast progress of sensors design and communications technique, sensor networks have also been quickly evolving in both research and practical domains in the last decade. More and more sensor networks have been - ployed in real-world to gather information for our daily life. Applications of sensor networks can be found in battle?eld surveillance, environmental monitoring, b- logical detection, smart spaces, industrial diagnostics, etc. Although the technique of sensor networks has a very promising future, many challenges are still deserving lots of research efforts for its successful applications. Thisbookisdevotedtocoveragecontrol,oneofthemostfundamentalandimportant research issues in sensor networks. The aim of the book is to provide tutorial-like and up-to-date reference resources on various coverage control problems in sensor networks, a hot topic that has been intensively researched in recent years. Due to some unique characteristics of sensor networks such as energy constraint and - hoc topology, the coverage problems in sensor networks have many new scenarios and features that entitle them an important research issue in recent years. I have done my best to include in the book the most recent advances, techniques, protocols, results, and ?ndings in this ?eld.
This book presents state-of-the-art research advances in the field of wireless sensor networks systems and approaches. It provides in-depth study on a number of major topics such as protocols, localization, coverage control, community detection, small world analysis, etc. Multidisciplinary in nature and closely integrating theory and practice, the book will be of interest to all university researchers, telecommunications engineers and graduate students in wireless sensor networks who wish to learn the core principles, methods, algorithms, and applications. It would help readers rapidly grasp major topics of wireless sensor network and their advances.
The worldwide reach of the Internet allows malicious cyber criminals to coordinate and launch attacks on both cyber and cyber-physical infrastructure from anywhere in the world. This purpose of this handbook is to introduce the theoretical foundations and practical solution techniques for securing critical cyber and physical infrastructures as well as their underlying computing and communication architectures and systems. Examples of such infrastructures include utility networks (e.g., electrical power grids), ground transportation systems (automotives, roads, bridges and tunnels), airports and air traffic control systems, wired and wireless communication and sensor networks, systems for storing and distributing water and food supplies, medical and healthcare delivery systems, as well as financial, banking and commercial transaction assets. The handbook focus mostly on the scientific foundations and engineering techniques – while also addressing the proper integration of policies and access control mechanisms, for example, how human-developed policies can be properly enforced by an automated system. - Addresses the technical challenges facing design of secure infrastructures by providing examples of problems and solutions from a wide variety of internal and external attack scenarios - Includes contributions from leading researchers and practitioners in relevant application areas such as smart power grid, intelligent transportation systems, healthcare industry and so on - Loaded with examples of real world problems and pathways to solutions utilizing specific tools and techniques described in detail throughout
Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.
This book highlights cooperative coverage control approaches of multi-agent systems in uncertain environments and their applications in various fields. A novel theoretical formulation of multi-agent coverage is proposed to fulfill the coverage task via divide-and-conquer scheme. By taking workload partition and sweeping operations simultaneously, a distributed sweep coverage algorithm of multi-agent systems is developed to cooperatively complete the workload on the given region, and its input-to-state stability is guaranteed in theory. Moreover, the coverage performance is evaluated by estimating the error between the actual coverage time and the optimal time. Three application scenarios are presented to demonstrate the advantages of cooperative coverage control approaches in missile interception, intelligent transportation systems and environment monitoring, respectively.
"This book showcases the work many devoted wireless sensor network researchers all over world, and exhibits the up-to-date developments of WSNs from various perspectives"--Provided by publisher.
This two-volume book constitutes the refereed proceedings of the Second International Conference on Multimedia Technology and Enhanced Learning, ICMTEL 2020, held in Leicester, United Kingdom, in April 2020. Due to the COVID-19 pandemic all papers were presented in YouTubeLive. The 83 revised full papers have been selected from 158 submissions. They describe new learning technologies which range from smart school, smart class and smart learning at home and which have been developed from new technologies such as machine learning, multimedia and Internet of Things.
This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation
This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.
- The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring - Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications - Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware This book is the definitive reference in multi-camera networks. It gives clear guidance on the conceptual and implementation issues involved in the design and operation of multi-camera networks, as well as presenting the state-of-the-art in hardware, algorithms and system development. The book is broad in scope, covering smart camera architectures, embedded processing, sensor fusion and middleware, calibration and topology, network-based detection and tracking, and applications in distributed and collaborative methods in camera networks. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate students working in signal and video processing, computer vision, and sensor networks. Hamid Aghajan is a Professor of Electrical Engineering (consulting) at Stanford University. His research is on multi-camera networks for smart environments with application to smart homes, assisted living and well being, meeting rooms, and avatar-based communication and social interactions. He is Editor-in-Chief of Journal of Ambient Intelligence and Smart Environments, and was general chair of ACM/IEEE ICDSC 2008. Andrea Cavallaro is Reader (Associate Professor) at Queen Mary, University of London (QMUL). His research is on target tracking and audiovisual content analysis for advanced surveillance and multi-sensor systems. He serves as Associate Editor of the IEEE Signal Processing Magazine and the IEEE Trans. on Multimedia, and has been general chair of IEEE AVSS 2007, ACM/IEEE ICDSC 2009 and BMVC 2009. - The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring - Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications - Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware