Download Free Cours Danalyse De Lecole Royale Polytechnique Volume 1 Primary Source Edition Book in PDF and EPUB Free Download. You can read online Cours Danalyse De Lecole Royale Polytechnique Volume 1 Primary Source Edition and write the review.

“It appears to me that if one wants to make progress in mathematics one should study the masters and not the pupils.” —Niels Henrik Abel Recent pedagogical research has supported Abel's claim of the effectiveness of reading the masters. Students exposed to historically based pedagogy see mathematics not as a monolithic assemblage of facts but as a collection of mental processes and an evolving cultural construct built to solve actual problems. Exposure to the immediacy of the original investigations can inspire an inquiry mindset in students and lead to an appreciation of mathematics as a living intellectual activity. TRIUMPHS (TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources) is an NSF-funded initiative to design materials that effectively harness the power of reading primary historical documents in undergraduate mathematics instruction. Teaching and Learning with Primary Source Projects is a collection of 24 classroom modules (PSPs) produced by TRIUMPHS that incorporate the reading of primary source excerpts to teach core mathematical topics. The selected excerpts are intertwined with thoughtfully designed student tasks that prompt students to actively engage with and explore the source material. Rigorously classroom tested and scrupulously edited to comply with the standards developed by the TRIUMPHS project, each of the PSPs in this volume can be inserted directly into a course in real analysis, complex variables, or topology and used to replace a standard textbook treatment of core course content. The volume also contains a comprehensive historical overview of the sociocultural and mathematical contexts within which the three subjects developed, along with extensive implementation guidance. Students and faculty alike are afforded a deeper classroom experience as they heed Abel's advice by studying today's mathematics through the words of the masters who brought that mathematics to life. Primary sources provide motivation in the words of the original discoverers of new mathematics, draw attention to subtleties, encourage reflection on today's paradigms, and enhance students' ability to participate equally, regardless of their background. These beautifully written primary source projects that adopt an “inquiry” approach are rich in features lacking in modern textbooks. Prompted by the study of historical sources, students will grapple with uncertainties, ask questions, interpret, conjecture, and compare multiple perspectives, resulting in a unique and vivid guided learning experience. —David Pengelley, Oregon State University
In 1821, Augustin-Louis Cauchy (1789-1857) published a textbook, the Cours d’analyse, to accompany his course in analysis at the Ecole Polytechnique. It is one of the most influential mathematics books ever written. Not only did Cauchy provide a workable definition of limits and a means to make them the basis of a rigorous theory of calculus, but he also revitalized the idea that all mathematics could be set on such rigorous foundations. Today, the quality of a work of mathematics is judged in part on the quality of its rigor, and this standard is largely due to the transformation brought about by Cauchy and the Cours d’analyse. For this translation, the authors have also added commentary, notes, references, and an index.
This book examines the textual, social, cultural, practical and institutional environments to which the expression “teaching and learning contexts” refers. It reflects on the extent to which studying such environments helps us to better understand ancient or modern sources, and how notions of “teaching” and “learning” are to be understood. Tackling two problems: the first, is that of certain sources of scientific knowledge being studied without taking into account the various “contexts” of transmission that gave this knowledge a long-lasting meaning. The second is that other sources are related to teaching and learning activities, but without being too precise and demonstrative about the existence and nature of this “teaching context”. In other words, this book makes clear what is meant by “context” and highlights the complexity of the practice hidden by the words “teaching” and “learning”. Divided into three parts, the book makes accessible teaching and learning situations, presents comparatist approaches, and emphasizes the notion of teaching as projects embedded in coherent treatises or productions.
Jean-Nicolas-Louis Durand (1760–1834) regarded the Précis of the Lectures on Architecture (1802–5) and its companion volume, the Graphic Portion (1821), as both a basic course for future civil engineers and a treatise. Focusing the practice of architecture on utilitarian and economic values, he assailed the rationale behind classical architectural training: beauty, proportionality, and symbolism. His formal systematization of plans, elevations, and sections transformed architectural design into a selective modular typology in which symmetry and simple geometrical forms prevailed. His emphasis on pragmatic values, to the exclusion of metaphysical concerns, represented architecture as a closed system that subjected its own formal language to logical processes. Now published in English for the first time, the Précis and the Graphic Portion are classics of architectural education.
This textbook covers the majority of traditional topics of infinite sequences and series, starting from the very beginning – the definition and elementary properties of sequences of numbers, and ending with advanced results of uniform convergence and power series. The text is aimed at university students specializing in mathematics and natural sciences, and at all the readers interested in infinite sequences and series. It is designed for the reader who has a good working knowledge of calculus. No additional prior knowledge is required. The text is divided into five chapters, which can be grouped into two parts: the first two chapters are concerned with the sequences and series of numbers, while the remaining three chapters are devoted to the sequences and series of functions, including the power series. Within each major topic, the exposition is inductive and starts with rather simple definitions and/or examples, becoming more compressed and sophisticated as the course progresses. Each key notion and result is illustrated with examples explained in detail. Some more complicated topics and results are marked as complements and can be omitted on a first reading. The text includes a large number of problems and exercises, making it suitable for both classroom use and self-study. Many standard exercises are included in each section to develop basic techniques and test the understanding of key concepts. Other problems are more theoretically oriented and illustrate more intricate points of the theory, or provide counterexamples to false propositions which seem to be natural at first glance. Solutions to additional problems proposed at the end of each chapter are provided as an electronic supplement to this book.
Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.
This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mathematics majors as well as graduate students. Unlike other books, the present monograph treats the mathematical and historical aspects in equal measure, providing detailed and rigorous proofs of the mathematical results and even including original source material presenting the flavour of the history.