Download Free Council For African American Researchers In The Mathematical Sciences Volume Iii Book in PDF and EPUB Free Download. You can read online Council For African American Researchers In The Mathematical Sciences Volume Iii and write the review.

This volume presents research and expository papers presented at the third and fifth meetings of the Council for African American Researchers in the Mathematical Sciences (CAARMS). The CAARMS is a group dedicated to organizing an annual conference that showcases the current research primarily, but not exclusively, of African Americans in the mathematical sciences, including mathematics, operations research, statistics, and computer science. Held annually since 1995, significant numbers of researchers have presented their current work in hour-long technical presentations, and graduate students have presented their work in organized poster sessions. The events create an ideal forum for mentoring and networking where attendees can meet researchers and graduate students interested in the same fields. For volumes based on previous CAARMS proceedings, see African Americans in Mathematics II (Volume 252 in the AMS series, Contemporary Mathematics), and African Americans in Mathematics (Volume 34 in the AMS series, DIMACS).
Since the first conference in 1995, significant numbers of researchers have presented their current work in technical talks, and graduate students have presented their work in organized poster sessions."--BOOK JACKET.
"This volume contains articles based on talks presented at the Thirteenth Conference of African American Researchers in the Mathematical Sciences (CAARMS), held at Northeastern University and the University of Massachusetts, Boston on June 19-22, 2007. The representation theory of Lie groups and its applications were a major focus of the talks."--BOOK JACKET.
The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This book publishes papers originally presented at a conference on the Mathematical Aspects of Orbifold String Theory, hosted by the University of Wisconsin-Madison. It contains a great deal of information not fully covered in the published literature and showcases the current state of the art in orbital string theory. The subject of orbifolds has a long prehistory, going back to the work of Thurston and Haefliger, with roots in the theory of manifolds, group actions, and foliations. The recent explosion of activity on the topic has been powered by applications of orbifolds to moduli problems and quantum field theory. The present volume presents an interdisciplinary look at orbifold problems. Topics such as stacks, vertex operator algebras, branes, groupoids, K-theory and quantum cohomology are discussed. The book reflects the thinking of distinguished investigators working in the areas of mathematical physics, algebraic geometry, algebraic topology, symplectic geometry and representation theory. By presenting the work of a broad range of mathematicians and physicists who use and study orbifolds, it familiarizes readers with the various points of view and types of results the researchers bring to the subject.
For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.
One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.
This volume presents articles from several lectures presented at the school on ``Quantum Symmetries in Theoretical Physics and Mathematics'' held in Bariloche, Argentina. The various lecturers provided significantly different points of view on several aspects of Hopf algebras, quantum group theory, and noncommutative differential geometry, ranging from analysis, geometry, and algebra to physical models, especially in connection with integrable systems and conformal field theories.Primary topics discussed in the text include subgroups of quantum $SU(N)$, quantum ADE classifications and generalized Coxeter systems, modular invariance, defects and boundaries in conformal field theory, finite dimensional Hopf algebras, Lie bialgebras and Belavin-Drinfeld triples, real forms ofquantum spaces, perturbative and non-perturbative Yang-Baxter operators, braided subfactors in operator algebras and conformal field theory, and generalized ($d$) cohomologies.
The papers in this volume are based on talks given at the 2001 Manchester Meeting of the London Mathematical Society, which was followed by an international workshop on Quantization, Deformations, and New Homological and Categorical Methods in Mathematical Physics. Focus is on the topics suggested by the title: quantization in its various aspects, Poisson brackets and generalizations, and structures beyond'' this, including symplectic supermanifolds, operads, Lie groupoids and Lie (bi)algebroids, and algebras with $n$-ary operations. The book offers accounts of up-to-date results as well as accessible expositions aimed at a broad reading audience of researchers in differential geometry, algebraic topology and mathematical physics.
This collection is the proceedings volume for the AMS-IMS-SIAM Joint Summer Research Conference, Lusternik-Schnirelmann Category, held in 2001 at Mount Holyoke College in Massachusetts. The conference attracted an international group of 37 participants that included many leading experts. The contributions included here represent some of the field's most able practitioners. With a surge of recent activity, exciting advances have been made in this field, including the resolution of several long-standing conjectures. Lusternik-Schnirelmann category is a numerical homotopy invariant that also provides a lower bound for the number of critical points of a smooth function on a manifold. The study of this invariant, together with related notions, forms a subject lying on the boundary between homotopy theory and critical point theory. These articles cover a wide range of topics: from a focus on concrete computations and applications to more abstract extensions of the fundamental ideas. The volume includes a survey article by P. Hilton that discusses earlier results from homotopy theory that form the basis for more recent work in this area. In this volume, professional mathematicians in topology and dynamical systems as well as graduate students will catch glimpses of the most recent views of the subject.