Download Free Cosmic Ray Energy Determination By The Reduced Opening Angle Method Book in PDF and EPUB Free Download. You can read online Cosmic Ray Energy Determination By The Reduced Opening Angle Method and write the review.

The reduced opening angle technique offers a simple way with minimal model dependence to measure cosmic ray energies over a broad range with out any normalization uncertainties. The emulsion film and CR39 detectors proposed are well established techniques and should perform adequately. The analysis method depends on accurate automatic scanning of the CR39 plates. UAH have developed such a capability. With the proposed geometry energy measurements to approx. 5 TeV/a can be made. The expected iron event rate (E greater than or equal to 500 GeV/a) is 10/sq m day. The expected energy resolution, from accelerator calibrations at 200 GeV/a, is -50% to +80%. Since the absolute flux has some sensitivity to the assumed power law index it is essential that good energy resolution is obtained. The expected charge resolution is approx. 0.3 charge units for the CNO group falling to approx. 1 charge unit for the iron group. A suitable event trigger would be a measurable (greater than 2 micrometer) deflected heavy (Z greater than 2) fragment. One potential background is electromagnetic dissociation that predominantly couples to individual protons or alphas. Although the cross- sections can be appreciable such events will not pass the event trigger. Gregory, John C. Marshall Space Flight Center NAS8-38609...
Accurate measurement of the primary galactic cosmic ray species energy dependence in the regime beyond approx. 500 GeV/a is difficult due to the low flux and the limitations of energy measurement techniques. However, such observations are essential to resolve several questions of current interest such as: Is the enrichment of heavy species (Z greater that or equal to 6) cosmic rays first reported at higher energies by the proton satellite' and then later at lower energies real? The results from a previous deployment of the reduced opening angle technique are inconclusive but the authors do point to limitations in the previous techniques. Another intriguing puzzle is the energy dependence of silicon cosmic rays. Two independent experiments using different experimental techniques indicate that silicon is under-abundant. At present the observation is limited by statistics; it could still be a three sigma fluctuation. However, if confirmed the current models of acceleration and propagation which are species independent are seriously inadequate. To progress further the species and energy dependence must be accurately measured in a manner that is free from systematic uncertainty. In this report we show that the reduced opening angle method offers a simple and relatively inexpensive method to answer these questions. First we present the physics of the reduced opening angle and indicate the expected energy and charge resolution. The proposed detector design is then presented followed by the expected performance. Where ever possible simple phenomenological expressions that allow 'back of the envelope' estimates are given. More details are presented in the appendices. The limit of the energy resolution and the expected event rates for iron cosmic rays are calculated. Salient points are summarized in the conclusions.
Over recent years there has been marked growth in interest in the study of techniques of cosmic ray physics by astrophysicists and particle physicists. Cosmic radiation is important for the astrophysicist because in the farther reaches of the universe. For particle physicists, it provides the opportunity to study neutrinos and very high energy particles of galactic origin. More importantly, cosmic rays constitue the background, and in some cases possibly the signal, for the more exotic unconfirmed hypothesized particles such as monopoles and sparticles. Concentrating on the highest energy cosmic rays, this book describes where they originate, acquire energy, and interact, in accreting neutron stars, supernova remnants, in large-scale shock waves. It also describes their interactions in the atmosphere and in the earth, how they are studied in surface and very large underground detectors, and what they tell us.
This revised edition provides an up-to-date summary of the field of ultra-high energy cosmic rays, dealing with their origin, propagation, and composition,. The authors reflect the enormous strides made since the first edition in the realm of experimental work, in particular the use of vastly improved, more sensitive and precise detectors. The level remains introductory and pedagogical, suitable for students and researchers interested in moving into this exciting field. Throughout the text, the authors focus on giving an introductory overview of the key physics issues, followed by a clear and concise description of experimental approaches and current results. Key Features: Updates the most coherent summary of the field available, with new text that provides the reader with clear historical context. Brand new discussion of contemporary space-based experiments and ideas for extending ground-based detectors. Completely new discussion of radio detection methods. Includes a new chapter on small to intermediate-scale anisotropy. Offers new sections on modern hadronic models and software packages to simulate showers.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Cosmic ray physics has recently attracted a great deal of attention from the high energy physics community because of the discovery of new sources and the advent of new techniques. The result of a series of lectures prepared for graduate students and postdoctoral researchers, this book is a general introduction to experimental techniques and results in the field of ultrahigh energy cosmic rays. It succinctly summarizes the rapidly developing field, and provides modern results that include data from newer detectors. Combining experiment and theory, the text explores the results of a single, easy-to-understand experiment to tie together various issues involved in the physics of ultrahigh energy cosmic rays.